Zum Inhalt springen

Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil I/Arbeitsblatt 4/kontrolle

Aus Wikiversity



Die Pausenaufgabe

Löse das lineare Gleichungssystem




Übungsaufgaben

Löse die lineare Gleichung

für die folgenden Körper :

a) ,

b) ,

c) , der Körper mit zwei Elementen aus Beispiel *****,

d) , der Körper mit sieben Elementen aus Beispiel *****.


Der Körper der komplexen Zahlen wird in der Analysis eingeführt. Eine komplexe Zahl hat die Form mit reellen Zahlen . Bei der Multiplikation rechnet man . Die inverse komplexe Zahl zu ist .


Löse die lineare Gleichung

über und berechne den Betrag der Lösung.



Zwei Personen, und , liegen unter einer Palme, besitzt Fladenbrote und besitzt Fladenbrote. Eine dritte Person kommt hinzu, die kein Fladenbrot besitzt, aber Taler. Die drei Personen werden sich einig, für die Taler die Fladenbrote untereinander gleichmäßig aufzuteilen. Wie viele Taler gibt an und an ?



In einer Familie leben und . Dabei ist dreimal so alt wie und zusammen, ist älter als und ist älter als , wobei der Altersunterschied von zu doppelt so groß wie der von zu ist. Ferner ist siebenmal so alt wie und die Summe aller Familienmitglieder ist so alt wie die Großmutter väterlicherseits, nämlich .


a) Stelle ein lineares Gleichungssystem auf, das die beschriebenen Verhältnisse ausdrückt.


b) Löse dieses Gleichungssystem.



Kevin zahlt für einen Winterblumenstrauß mit Schneeglöckchen und Mistelzweigen € und Jennifer zahlt für einen Strauß aus Schneeglöckchen und Mistelzweigen €. Wie viel kostet ein Strauß mit einem Schneeglöckchen und Mistelzweigen?



Wir betrachten eine Uhr mit Stunden- und Minutenzeiger. Es ist jetzt 6 Uhr, sodass die beiden Zeiger direkt gegenüber stehen. Um wie viel Uhr stehen die beiden Zeiger zum nächsten Mal direkt gegenüber?



Berechne das Matrizenprodukt


Unter dem -ten Standardvektor der Länge versteht man den Vektor, der an der -ten Stelle eine und sonst nur Nullen stehen hat.


Bestimme das Matrizenprodukt

wobei links der -te Standardvektor (der Länge ) als Zeilenvektor und rechts der -te Standardvektor (ebenfalls der Länge ) als Spaltenvektor aufgefasst wird.



Es sei eine -Matrix. Zeige, dass das Matrizenprodukt mit dem -ten Standardvektor (als Spaltenvektor aufgefasst) die -te Spalte von ergibt. Was ist , wobei der -te Standardvektor (als Zeilenvektor aufgefasst) ist?



Berechne über den komplexen Zahlen das Matrizenprodukt



Berechne das Matrizenprodukt

gemäß den beiden möglichen Klammerungen.


Zu einer Matrix bezeichnet man mit die -fache Verknüpfung (Matrizenmultiplikation) mit sich selbst. Man spricht dann auch von -ten Potenzen der Matrix.


Berechne zur Matrix

die Potenzen



Es sei

eine Diagonalmatrix und eine -Matrix. Beschreibe und .



Aufgabe Aufgabe 4.15 ändern

Es sei ein Körper und . Zeige, dass das Transponieren von Matrizen folgende Eigenschaften besitzt (dabei seien , und ).

  1. .
  2. .
  3. .
  4. .




Aufgaben zum Abgeben

Löse das lineare Gleichungssystem

über dem Körper aus Beispiel 3.9.



Berechne über den komplexen Zahlen das Matrizenprodukt



Wir betrachten die Matrix

über einem Körper . Zeige, dass die vierte Potenz von gleich ist, also


Für die folgende Aussage wird sich bald ein einfacher Beweis über die Beziehung zwischen Matrizen und linearen Abbildungen ergeben.


Zeige, dass die Matrizenmultiplikation assoziativ ist. Genauer: Es sei ein Körper und es sei eine -Matrix, eine -Matrix und eine -Matrix über . Zeige, dass ist.



Es sei . Finde und beweise eine Formel für die -te Potenz der Matrix


<< | Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)