Zum Inhalt springen

Kurs:Lineare Algebra (Osnabrück 2024-2025)/Teil I/Arbeitsblatt 4/kontrolle

Aus Wikiversity



Die Pausenaufgabe

Löse das lineare Gleichungssystem




Übungsaufgaben

Löse die lineare Gleichung

für die folgenden Körper :

a) ,

b) ,

c) , der Körper mit zwei Elementen aus Beispiel 3.8,

d) , der Körper mit sieben Elementen aus Beispiel 3.9.


Der Körper der komplexen Zahlen wird in der Analysis eingeführt (siehe auch den Anhang). Eine komplexe Zahl hat die Form mit reellen Zahlen . Bei der Multiplikation rechnet man . Die inverse komplexe Zahl zu ist .


Löse die lineare Gleichung

über und berechne den Betrag der Lösung.



Zeige, dass das lineare Gleichungssystem

nur die triviale Lösung besitzt.



Gibt es eine Lösung für das lineare Gleichungssystem

aus Beispiel 4.1?



Zwei Personen, und , liegen unter einer Palme, besitzt Fladenbrote und besitzt Fladenbrote. Eine dritte Person kommt hinzu, die kein Fladenbrot besitzt, aber Taler. Die drei Personen werden sich einig, für die Taler die Fladenbrote untereinander gleichmäßig aufzuteilen. Wie viele Taler gibt an und an ?



Bei der Onlinepartnervermittlung „e-Tarzan meets e-Jane“ verliebt sich alle elf Minuten ein Single. Wie lange (in gerundeten Jahren) dauert es, bis sich alle erwachsenen Menschen in Deutschland (ca. ) verliebt haben, wenn ihnen allein dieser Weg zur Verfügung steht.



In einer Familie leben und . Dabei ist dreimal so alt wie und zusammen, ist älter als und ist älter als , wobei der Altersunterschied von zu doppelt so groß wie der von zu ist. Ferner ist siebenmal so alt wie und die Summe aller Familienmitglieder ist so alt wie die Großmutter väterlicherseits, nämlich .


a) Stelle ein lineares Gleichungssystem auf, das die beschriebenen Verhältnisse ausdrückt.


b) Löse dieses Gleichungssystem.



Kevin zahlt für einen Winterblumenstrauß mit Schneeglöckchen und Mistelzweigen € und Jennifer zahlt für einen Strauß aus Schneeglöckchen und Mistelzweigen €. Wie viel kostet ein Strauß mit einem Schneeglöckchen und Mistelzweigen?



Wir betrachten eine Uhr mit Stunden- und Minutenzeiger. Es ist jetzt 6 Uhr, sodass die beiden Zeiger direkt gegenüber stehen. Um wie viel Uhr stehen die beiden Zeiger zum nächsten Mal direkt gegenüber?



Berechne das Matrizenprodukt


Unter dem -ten Standardvektor der Länge versteht man den Vektor, der an der -ten Stelle eine und sonst nur Nullen stehen hat.


Bestimme das Matrizenprodukt

wobei links der -te Standardvektor (der Länge ) als Zeilenvektor und rechts der -te Standardvektor (ebenfalls der Länge ) als Spaltenvektor aufgefasst wird.



Es sei eine -Matrix. Zeige, dass das Matrizenprodukt mit dem -ten Standardvektor (als Spaltenvektor aufgefasst) die -te Spalte von ergibt. Was ist , wobei der -te Standardvektor (als Zeilenvektor aufgefasst) ist?



Berechne über den komplexen Zahlen das Matrizenprodukt



Berechne das Matrizenprodukt

gemäß den beiden möglichen Klammerungen.



Es seien - Matrizen und gegeben. Das Produkt ergibt sich mit der üblichen Multiplikationsregel „Zeile x Spalte“, bei der man insgesamt Multiplikationen im Körper ausführen muss. Wir beschreiben, wie man diese Matrixmultiplikation mit nur Multiplikationen (aber mit mehr Additionen) durchführen kann. Wir setzen

Zeige, dass für die Koeffizienten der Produktmatrix

die Gleichungen

gelten.


Zu einer Matrix bezeichnet man mit die -fache Verknüpfung (Matrizenmultiplikation) mit sich selbst. Man spricht dann auch von -ten Potenzen der Matrix.


Berechne zur Matrix

die Potenzen



Es sei

eine Diagonalmatrix und eine -Matrix. Beschreibe und .


Die Hauptschwierigkeit in der folgenden Aufgabe liegt im Nachweis der Assoziativität für die Multiplikation (siehe Aufgabe 4.24) und des Distributivgesetzes.


Es sei ein Körper und . Zeige, dass die Menge aller quadratischen - Matrizen über mit der Addition von Matrizen und mit der Verknüpfung von Matrizen als Multiplikation ein Ring ist.



Aufgabe Aufgabe 4.20 ändern

Es sei ein Körper und . Zeige, dass das Transponieren von Matrizen folgende Eigenschaften besitzt (dabei seien , und ).

  1. .
  2. .
  3. .
  4. .




Aufgaben zum Abgeben

Löse das lineare Gleichungssystem

über dem Körper aus Beispiel 3.9.



Berechne über den komplexen Zahlen das Matrizenprodukt



Wir betrachten die Matrix

über einem Körper . Zeige, dass die vierte Potenz von gleich ist, also


Für die folgende Aussage wird sich über Lemma 11.10 ein einfacher Beweis über die Beziehung zwischen Matrizen und linearen Abbildungen ergeben.


Aufgabe (4 Punkte)Aufgabe 4.24 ändern

Zeige, dass die Matrizenmultiplikation assoziativ ist. Genauer: Es sei ein Körper und es sei eine -Matrix, eine -Matrix und eine -Matrix über . Zeige, dass ist.



Es sei . Finde und beweise eine Formel für die -te Potenz der Matrix