Zum Inhalt springen

Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II/Arbeitsblatt 45

Aus Wikiversity



Aufwärmaufgaben

Bestimme die Jacobi-Matrix der Abbildung



Bestimme die Jacobi-Matrix der Abbildung



Bestimme die Jacobi-Matrix der Abbildung



Bestimme sämtliche höheren Richtungsableitungen der Abbildung

die sich mit den beiden Standardrichtungen und ausdrücken lassen.



Zeige, dass eine Polynomfunktion beliebig oft stetig differenzierbar ist.



Es seien und endlichdimensionale, - Vektorräume offen und

eine -mal stetig differenzierbare Abbildung. Es sei eine Auswahl von Vektoren aus . Zeige, dass dann für jede Permutation die Gleichheit

gilt.




Aufgaben zum Abgeben

Aufgabe (3 Punkte)

Bestimme die Jacobi-Matrix der Abbildung



Aufgabe (3 Punkte)

Bestimme die Jacobi-Matrix der Abbildung

Berechne die Richtungsableitung dieser Abbildung in einem Punkt in Richtung . Bestätige, dass sich diese Richtungsableitung auch ergibt, wenn man die Jacobi-Matrix auf den Vektor anwendet.



Aufgabe (3 Punkte)

Zeige, dass keine partiell differenzierbare Funktion

existiert, sodass

für alle gilt.



Aufgabe (4 Punkte)

Es sei

eine Polynomfunktion. Zeige, dass es ein derart gibt, dass sämtliche -ten Richtungsableitungen sind.



Aufgabe (6 Punkte)

Es sei

eine zweimal stetig differenzierbare Funktion, für die in jedem Punkt

gelte. Zeige, dass es dann Funktionen

derart gibt, dass

gilt.



Aufgabe (6 Punkte)

Zeige, dass die Funktion

mit

zweimal partiell differenzierbar ist, und dass

gilt.




<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)