Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II/Vorlesung 45

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Partielle Ableitungen

Sei eine durch

gegebene Abbildung. Betrachtet man für einen fixierten Index die übrigen Variablen , , als Konstanten, so erhält man eine Abbildung , die nur von abhängt (entsprechend betrachtet man die übrigen Variablen als Parameter). Falls diese Funktion, als Funktion in einer Variablen, differenzierbar ist, so sagen wir, dass partiell differenzierbar bezüglich ist und bezeichnen diese Ableitung mit . Der Vorteil der partiellen Ableitungen liegt darin, dass man diese einfach berechnen kann. Jedoch hängen sie von der Wahl einer Basis ab. Die partiellen Ableitungen sind selbst Abbildungen von .


Definition  

Sei offen und sei eine Abbildung durch

gegeben. Es sei ein Punkt. Für fixierte Indizes und betrachten wir die Abbildung

(wobei ein reeller Intervall mit derart sei, dass gilt)

als Funktion in einer Variablen, wobei die übrigen Variablen , , fixiert seien. Ist diese Funktion in differenzierbar, so heißt partiell differenzierbar in bezüglich der Koordinate . Man bezeichnet diese Ableitung (welche ein Element in ist) mit

und nennt sie die -te partielle Ableitung von in .

Die Abbildung heißt partiell differenzierbar im Punkt , falls für alle und die partiellen Ableitungen in existieren. Die -te partielle Ableitung von in wird mit

bezeichnet.

Diese Definition führt die -te partielle Ableitung einer Funktion auf den Ableitungsbegriff in einer Variablen zurück, indem die anderen Variablen „festgehalten“ und als Parameter betrachtet werden. Daher bedeutet die Existenz der -ten partiellen Ableitung von im Punkt einfach die Existenz des Limes


Beispiel  

Wir betrachten die Funktion

Um die partielle Ableitung nach (in jedem Punkt) zu berechnen, betrachtet man als eine Konstante, so dass eine nur von abhängige Funktion dasteht. Diese wird gemäß den Ableitungsregeln für Funktionen in einer Variablen abgeleitet, so dass sich

ergibt. Für die partielle Ableitung nach betrachet man als eine Konstante und erhält


Die partiellen Ableitungen sind im Wesentlichen die Richtungsableitungen in Richtung der Basisvektoren. Insbesondere machen partielle Ableitungen nur dann Sinn, wenn eine Basis im Vektorraum, der den Definitionsbereich einer Abbildung darstellt, gewählt worden ist, bzw. wenn eben von vornherein ein betrachtet wird.



Lemma  

Sei offen, ein Punkt und sei

eine Abbildung.

Dann ist in genau dann partiell differenzierbar, wenn die Richtungsableitungen von sämtlichen Komponentenfunktionen in in Richtung eines jeden Standardvektors existieren.

In diesem Fall stimmt die -te partielle Ableitung von in mit der Richtungsableitung von in in Richtung des -ten Standardvektors überein, und ist in genau dann partiell differenzierbar, wenn die Richtungsableitungen in in Richtung eines jeden Standardvektors existieren.

Beweis  

Sei . Da partielle Ableitungen die Ableitungen von Funktionen in einer Variablen sind, ergibt sich

Fehler beim Parsen (Unbekannte Funktion „\begin{align}“): {\displaystyle {{}} \begin{align} \frac{ \partial f_j }{ \partial x_i } (P) & = \operatorname{lim}_{ s \rightarrow 0, s \neq 0 } \, \frac{ f_j(a_1 , \ldots , a_{i-1}, a_i + s, a_{i+1} , \ldots , a_n) - f_j(a_1 , \ldots , a_{i-1}, a_i, a_{i+1} , \ldots , a_n) } { s } \\ & = \operatorname{lim}_{ s \rightarrow 0, s \neq 0 } \, \frac{ f_j( P +s e_i) - f_j(P) } { s } \\ & = {{<span class="error">Expansion depth limit exceeded</span>|latex |#default={ \left(\right) } }} {{<span class="error">Expansion depth limit exceeded</span>|latex |#default={ \left(\right) } }} . \, \end{align} }



Definition  

Sei offen und sei eine Abbildung

gegeben. Dann heißt partiell differenzierbar, wenn in jedem Punkt partiell differenzierbar ist. In diesem Fall heißt die Abbildung

die -te partielle Ableitung von .

Definition  

Sei offen und sei eine Abbildung

gegeben, die in partiell differenzierbar sei. Dann heißt die Matrix

die Jacobi-Matrix zu im Punkt .


Beispiel  

Wir betrachten die Abbildung , die durch

gegeben sei. Die partiellen Ableitungen von sind

und die partiellen Ableitungen von sind

Damit erhalten wir für einen beliebigen Punkt die Jacobi-Matrix

Für einen speziellen Punkt, z.B. , setzt man einfach ein:




Höhere Richtungsableitungen

Seien und endlichdimensionale -Vektorräume und eine offene Teilmenge. Für eine Abbildung und einen fixierten Vektor ist die Richtungsableitung in Richtung (falls diese existiert) selbst eine Abbildung

Als solche macht es Sinn zu fragen, ob in Richtung differenzierbar ist. Wir sprechen dann von höheren Ableitungen. Dies wird präzisiert durch die folgende induktive Definition.


Definition  

Es seien und endlichdimensionale -Vektorräume,

eine Abbildung auf einer offenen Menge und Vektoren in . Man sagt, dass die höhere Richtungsableitung von in Richtung existiert, wenn die höhere Richtungsableitung in Richtung existiert und davon die Richtungsableitung in Richtung existiert. Sie wird mit

bezeichnet.


Beispiel  

Wir bestimmen die Richtungsableitung zur Funktion

in Richtung . Zu einem Punkt müssen wir die Funktion

nach im Nullpunkt ableiten. Es ist

Die Ableitung von dieser Funktion im Nullpunkt ist

also ist

Für diese Funktion können wir nun die Richtungsableitung in Richtung ausrechnen. Es ist

Die Ableitung von dieser Funktion im Nullpunkt ist

also ist



Definition  

Es seien und endlichdimensionale -Vektorräume und

eine Abbildung auf einer offenen Menge. Man sagt, dass -mal stetig differenzierbar ist, wenn für jede Auswahl von Vektoren aus die höhere Richtungsableitung

in Richtung existiert und stetig ist.

Einmal stetig differenzierbar bedeutet also, dass die Richtungsableitung in jede Richtung existiert und stetig ist.

Polynomfunktionen sind beliebig oft stetig differenzierbar, siehe Aufgabe 45.5.

Auch partielle Ableitungen kann man wie Richtungsableitungen hintereinanderausführen. Dies führt zu Schreibweisen wie

und Ähnliche.



Der Satz von Schwarz

Beispiel  

Wir betrachten die Funktion

Die partiellen Ableitungen sind

Diese Funktionen sind selbst wiederum partiell differenzierbar, und wir berechnen

und

Die beiden zweiten partiellen Ableitungen und stimmen also überein.


In diesem Beispiel zeigt sich ein allgemeiner Sachverhalt, der Satz von Schwarz (oder auch Satz von Clairaut) heißt.



Satz  

Sei offen und eine Abbildung, so dass für die zweiten Richtungsableitungen und existieren und stetig sind.

Dann gilt

Beweis  



Korollar

Es seien und endlichdimensionale -Vektorräume, offen und

eine -mal stetig differenzierbare Abbildung. Es sei eine Auswahl von Vektoren aus .

Dann gilt für jede Permutation die Gleichheit

Beweis

Siehe Aufgabe 45.6.




Korollar  

Sei offen und sei eine Abbildung, so dass für die zweiten partiellen Ableitungen und existieren und stetig sind.

Dann gilt

Beweis  

Des folgt aus Satz 45.11 und Lemma 45.3.



<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)