Zum Inhalt springen

Kurs:Mathematik für Anwender (Osnabrück 2020-2021)/Teil II/Arbeitsblatt 50/kontrolle

Aus Wikiversity



Übungsaufgaben

Es sei ein Monom und es sei eine Hintereinanderschaltung von partiellen Ableitungen, .

  1. Zeige

    falls für ein ist.

  2. Zeige

    falls für alle ist.



Aufgabe Aufgabe 50.2 ändern

Es sei ein Monom und es sei eine Hintereinanderschaltung von partiellen Ableitungen, .

  1. Zeige

    falls für ein ist.

  2. Zeige



Bestätige Satz 50.1 für in und bis zur dritten Ableitung.



Bestimme das Taylor-Polynom vom Grad für die Funktion

im Nullpunkt .



Bestimme das Taylor-Polynom zweiter Ordnung der Funktion

im Punkt .



Bestimme das Taylor-Polynom zweiter Ordnung der Funktion

im Punkt .



Bestimme das Taylor-Polynom zweiter Ordnung der Funktion

im Punkt .



Notiere das Taylor-Polynom für eine (hinreichend oft differenzierbare) Funktion in oder Variablen für die Grade .



Bestimme das Taylor-Polynom vierter Ordnung der Funktion

im Nullpunkt.



Es sei

Berechne das Taylor-Polynom der Ordnung im Punkt algebraisch (d.h. man drücke das Polynom in den neuen Variablen aus und lese daraus das Taylor-Polynom ab) und über Ableitungen.



Es sei ein Polynom in Variablen vom Grad . Zeige, dass mit dem Taylor-Polynom vom Grad von im Nullpunkt übereinstimmt.



Aufgabe Aufgabe 50.12 ändern

Es sei ein Monom vom Grad . Zeige



Es sei ein endlichdimensionaler reeller Vektorraum, offen, und seien

zwei zweimal stetig differenzierbare Funktionen. Zeige durch ein Beispiel, dass das Taylor-Polynom zum Produkt im Punkt vom Grad nicht das Produkt der beiden Taylor-Polynome von und in vom Grad sein muss.



Es sei offen, und

eine Funktion. Sei . Zeige, falls für eine Konstante und alle in einer offenen Umgebung von die Abschätzung gilt, dass dann folgt.

Zeige umgekehrt durch ein Beispiel, dass aus im Allgemeinen nicht die Abschätzung folgt.




Aufgaben zum Abgeben

Bestätige Satz 50.1 anhand des folgenden Beispiels.

, , .



Bestimme das Taylor-Polynom vom Grad für die Funktion

im Nullpunkt .



Es sei

Berechne das Taylor-Polynom der Ordnung im Punkt algebraisch (d.h. man drücke das Polynom in den neuen Variablen aus und lese daraus das Taylor-Polynom ab) und über Ableitungen.



Es sei ein endlichdimensionaler reeller Vektorraum, offen, und seien

zwei -mal stetig differenzierbare Funktionen mit den Taylor-Polynomen und in vom Grad . Zeige, dass das Produkt ebenfalls -mal stetig differenzierbar ist, und dass für das Taylor-Polynom von in vom Grad die Beziehung

besteht, wobei der Subskript bedeutet, dass das Polynom bis zum Grad genommen wird.



Es sei offen, ein Punkt und

eine Funktion. Sei . Zeige, dass es maximal ein Polynom vom Grad mit der Eigenschaft geben kann, dass

gilt.