Zum Inhalt springen

Kurs:Analysis (Osnabrück 2013-2015)/Teil I/Arbeitsblatt 14/kontrolle

Aus Wikiversity



Übungsaufgaben

Zeige, dass das Bild eines abgeschlossenen Intervalls unter einer stetigen Funktion nicht abgeschlossen sein muss.



Zeige, dass das Bild eines offenen Intervalls unter einer stetigen Funktion nicht offen sein muss.



Zeige, dass das Bild eines beschränkten Intervalls unter einer stetigen Funktion nicht beschränkt sein muss.



Es sei ein reelles Intervall und

eine stetige, injektive Funktion. Zeige, dass streng wachsend oder streng fallend ist.



Es sei

eine Polynomfunktion vom Grad . Zeige, dass nicht gleichmäßig stetig ist.



Zeige, dass die Funktion

mit

stetig, aber nicht gleichmäßig stetig ist.



Es sei

eine stetige Funktion. Zeige, dass es eine stetige Fortsetzung

von gibt.



Man gebe ein Beispiel einer gleichmäßig stetigen Funktion

derart, dass keine stetige Fortsetzung

existiert.



Man gebe ein Beispiel einer stetigen Funktion

derart, dass das Bild von beschränkt ist und nicht gleichmäßig stetig ist.



Aufgabe Aufgabe 14.10 ändern

Es sei eine positive reelle Zahl und . Zeige, dass die durch

definierte Zahl unabhängig von der Bruchdarstellung für ist.



Aufgabe * Aufgabe 14.11 ändern

Es sei eine positive reelle Zahl. Zeige, dass die Funktion

folgende Eigenschaften besitzt.

  1. Es ist für alle .
  2. Es ist .
  3. Für und ist .
  4. Für und ist .
  5. Für ist streng wachsend.
  6. Für ist streng fallend.
  7. Es ist für alle .
  8. Für ist .



Es sei eine reelle Zahl. Zeige, dass die durch

definierte Folge gegen konvergiert.



Führe die Details im Beweis zu Lemma 14.9 für den Fall aus.



Aufgabe * Aufgabe 14.14 ändern

Es sei eine positive reelle Zahl. Zeige, dass die Exponentialfunktion

folgende Eigenschaften besitzt.

  1. Es ist für alle .
  2. Es ist .
  3. Für und ist .
  4. Für und ist .
  5. Für ist streng wachsend.
  6. Für ist streng fallend.
  7. Es ist für alle .
  8. Für ist .


Es sei ein reelles Intervall und es sei eine Unterteilung

und Werte gegeben. Unter der zugehörigen (stückweise) linearen Interpolation versteht man die Abbildung

die auf jedem Teilintervall durch die affin-lineare Funktion gegeben ist, deren Graph die Punkte und durch eine gerade Strecke verbindet.


Diese Konstruktion kommt insbesondere dann zum Zuge, wenn eine gegebene Funktion

approximiert werden soll, wobei die Unterteilung gegeben ist und man nimmt.


Es sei ein reelles Intervall und es sei eine Unterteilung

und Werte gegeben. Beschreibe die zugehörige lineare Interpolation durch funktionale Ausdrücke und zeige, dass es sich um eine stetige Funktion handelt.


Aufgabe * Aufgabe 14.16 ändern

Es sei

eine stetige Funktion , die die Gleichung

für alle erfüllt. Zeige, dass eine Exponentialfunktion ist, d.h. dass es ein mit gibt.


In den folgenden Aufgaben bedeutet die Menge der stetigen Funktionen von nach (für eine Teilmenge ) und den abgeschlossenen Vollkreis in mit Mittelpunkt und Radius (die Randpunkte gehören also dazu).



Aufgaben zum Abgeben

Wir betrachten die Abbildung

eine stetige Funktion wird also auf ihre Einschränkung auf abgebildet. Zeige, dass injektiv, aber nicht surjektiv ist.



Man gebe ein Beispiel für eine stetige unbeschränkte Funktion

Zeige, dass eine solche Funktion keine stetige Fortsetzung auf besitzt.



Es sei , und

eine stetige Funktion. Zeige, dass es eine stetige Fortsetzung

von gibt.



Es sei ein reelles Intervall und

eine Funktion. Zeige, dass genau dann stetig ist, wenn folgende Bedingung erfüllt ist: Zu jedem gibt es eine Unterteilung

derart, dass die lineare Interpolation (zu dieser Unterteilung und zu ) die Eigenschaft

erfüllt.

(Bemerkung: Die vorstehende Aufgabe kann man so interpretieren, dass eine Funktion genau dann stetig ist, wenn man mit einem beliebig dünnen (gemessen in vertikaler Richtung) Stift den Funktionsgraphen durch zusammenhängende (endlich viele, nicht vertikale) Geradenstücke übermalen kann.)


<< | Kurs:Analysis (Osnabrück 2013-2015)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)