Kurs:Analysis (Osnabrück 2021-2023)/Teil I/Arbeitsblatt 2/kontrolle
- Übungsaufgaben
Wie sehen die Graphen der Funktionen aus, die Sie in der Schule kennengelernt haben?
Welche bijektiven Funktionen (oder zwischen Teilmengen von ) kennen Sie aus der Schule? Wie heißen die Umkehrabbildungen?
Es sollen möglichst viele bijektive Abbildungen zwischen den Fingerspitzen der linken Hand und den Fingerspitzen der rechten Hand dadurch realisiert werden, dass sich jeweils die zugehörigen (aufeinander abgebildeten) Fingerspitzen berühren.
- Realisiere die „natürliche“ Bijektion.
- Realisiere diejenigen Bijektionen, bei denen zwei benachbarte Fingerspitzen ihr natürliches Gegenüber vertauscht berühren und die drei anderen Fingerspitzen ihr natürliches Gegenüber berühren (benachbarte Transposition).
- Realisiere diejenigen Bijektionen, bei denen zwei Fingerspitzen ihr natürliches Gegenüber vertauscht berühren und die drei anderen Fingerspitzen ihr natürliches Gegenüber berühren (Transposition).
- Realisiere diejenigen Bijektionen, bei denen genau zwei Fingerspitzen ihr natürliches Gegenüber berühren.
- Realisiere diejenigen Bijektionen, bei denen genau eine Fingerspitze ihr natürliches Gegenüber berührt.
- Realisiere diejenigen Bijektionen, bei denen keine Fingerspitze ihr natürliches Gegenüber berührt.
Eine Funktion
heißt streng wachsend, wenn für alle mit auch gilt. Zeige, dass eine streng wachsende Funktion injektiv ist.
Man gebe Beispiele für Abbildungen
derart, dass injektiv, aber nicht surjektiv ist, und dass surjektiv, aber nicht injektiv ist.
Es seien und natürliche Zahlen. Zeige durch Induktion über , dass aus einer Bijektion
folgt, dass ist.
Wir betrachten die Mengen
und die Abbildungen und , die durch die Wertetabellen
und
gegeben sind.
- Erstelle eine Wertetabelle für .
- Sind die Abbildungen , , injektiv?
- Sind die Abbildungen , , surjektiv?
- Es sei die Menge aller
(lebenden oder verstorbenen)
Menschen. Untersuche die Abbildung
die jedem Menschen seine Mutter zuordnet, auf Injektivität und Surjektivität.
- Welche Bedeutung hat die Hintereinanderschaltung ?
- Wie sieht es aus, wenn man die gleiche Abbildungsvorschrift nimmt, sie aber auf die Menge aller Einzelkinder und auf die Menge aller Mütter einschränkt?
- Seien Sie spitzfindig (evolutionsbiologisch oder religiös) und argumentieren Sie, dass die Abbildung in (1) nicht wohldefiniert ist.
Der Pferdepfleger hat einen Korb voller Äpfel und geht auf die Weide, um die Äpfel an die Pferde zu verteilen. Danach geht jedes Pferd in seine Lieblingskuhle und macht dort einen großen Pferdeapfel. Modelliere den Vorgang mit geeigneten Mengen und Abbildungen. Man mache sich die Begriffe injektiv und surjektiv an diesem Beispiel klar. Kann die Gesamtabbildung surjektiv sein, wenn es 10 Äpfel, 6 Pferde und 8 Kuhlen gibt?
Es seien Mengen und und surjektive Abbildungen. Zeige, dass die Hintereinanderschaltung ebenfalls surjektiv ist.
Es seien Mengen und und injektive Abbildungen. Zeige, dass die Hintereinanderschaltung ebenfalls injektiv ist.
Es seien Mengen und
Abbildungen mit der Hintereinanderschaltung
Zeige: Wenn injektiv ist, so ist auch injektiv.
Es sei eine Menge von Personen und die Menge der Vornamen von diesen Personen und die Menge der Nachnamen von diesen Personen. Definiere natürliche Abbildungen von nach , nach und nach und untersuche sie in Hinblick auf die relevanten Abbildungsbegriffe.
Begründe, ob die Abbildung
injektiv ist oder nicht.
Es sei eine Menge und ihre Potenzmenge. Zeige, dass die Abbildung
bijektiv ist. Wie lautet die Umkehrabbildung?
Es sei eine Menge, die als disjunkte Vereinigung
gegeben ist. Definiere eine Bijektion zwischen der Potenzmenge und der Produktmenge . Wie verhalten sich diese beiden Mengen, wenn und zwar eine Vereinigung von ergeben, aber nicht disjunkt sind, und umgekehrt?
Es sei eine Menge. Stifte eine Bijektion zwischen
Es seien Mengen. Stifte eine Bijektion zwischen
Man mache sich diese Situation für und klar.
Es seien und Mengen und es sei
eine Abbildung. Es sei
und erfüllt. Zeige, dass dann die Umkehrabbildung von ist.
Es seien und Mengen. Zeige, dass die Abbildung
eine bijektive Abbildung zwischen den Produktmengen und festlegt.
Es sei eine Abbildung. Zeige, dass das Urbildnehmen
folgende Eigenschaften besitzt (für beliebige Teilmengen ):
Es sei eine Abbildung. Zeige, dass das Bildnehmen
folgende Eigenschaften besitzt (für beliebige Teilmengen ):
- ,
- ,
- .
Zeige durch Beispiele, dass die beiden Inklusionen in (1) und (3) echt sein können.
Es seien und Mengen und es sei
eine Abbildung. Zeige, dass genau dann injektiv ist, wenn das Urbildnehmen
surjektiv ist.
Es seien und Mengen und es sei
eine Abbildung. Zeige, dass genau dann surjektiv ist, wenn das Urbildnehmen
injektiv ist.
Betrachte die ganzen Zahlen mit der Differenz als Verknüpfung, also die Abbildung
Besitzt diese Verknüpfung ein neutrales Element? Ist diese Verknüpfung assoziativ, kommutativ, gibt es zu jedem Element ein inverses Element?
Es sei eine Menge mit einer Verknüpfung . Zeige, dass es maximal ein neutrales Element für die Verknüpfung gibt.
Zeige, dass die Verknüpfung auf einer Geraden, die zwei Punkten ihren Mittelpunkt zuordnet, kommutativ, aber nicht assoziativ ist. Gibt es ein neutrales Element?
Zeige, dass das Potenzieren auf den positiven natürlichen Zahlen, also die Zuordnung
weder kommutativ noch assoziativ ist. Besitzt diese Verknüpfung ein neutrales Element?
Es sei eine Menge mit einer Verknüpfung darauf, die wir als Produkt schreiben.
- Wie viele sinnvollen Klammerungen gibt es für die Verknüpfung von vier Elementen?
- Die Verknüpfung sei nun assoziativ. Zeige, dass das Produkt von vier Elementen nicht von irgendeiner Klammerung abhängt.
Es sei eine Menge und die zugehörige Potenzmenge. Betrachte den Durchschnitt von Teilmengen von als eine Verknüpfung auf . Ist diese Verknüpfung kommutativ, assoziativ, besitzt sie ein neutrales Element?
- Aufgaben zum Abgeben
Aufgabe (3 Punkte)Referenznummer erstellen
Aufgabe (3 Punkte)Referenznummer erstellen
Man beschreibe eine Bijektion zwischen und .
Aufgabe (3 Punkte)Referenznummer erstellen
Es seien Mengen und
Abbildungen mit der Hintereinanderschaltung
Zeige: Wenn surjektiv ist, so ist auch surjektiv.
Zeige durch ein Beispiel, dass die Umkehrung nicht gilt.
Aufgabe (3 Punkte)Referenznummer erstellen
Betrachte auf der Menge die Abbildung
die durch die Wertetabelle
gegeben ist. Berechne , also die -te Hintereinanderschaltung (oder Iteration) von mit sich selbst.
Aufgabe (5 Punkte)Referenznummer erstellen
Es seien und Mengen. Wir betrachten die Abbildung
bei der einer Abbildung das Urbildnehmen zugeordnet wird.
a) Zeige, dass injektiv ist.
b) Es sei . Zeige, dass nicht surjektiv ist.
Aufgabe (2 Punkte)Referenznummer erstellen
Es sei eine Menge mit einer assoziativen Verknüpfung darauf, die wir als schreiben. Zeige, dass
für beliebige gilt.