Kurs:Grundkurs Mathematik (Osnabrück 2022-2023)/Teil II/Arbeitsblatt 33

Aus Wikiversity



Die Pausenaufgabe

Aufgabe

Drücke in den Vektor

als Linearkombination der Vektoren

aus.




Übungsaufgaben

Aufgabe

Bestimme die (ungefähren) Koordinaten des skizzierten Punktes (eine Kästchenlänge repräsentiere eine Einheit).


Aufgabe

Markiere die folgenden Punkte in der kartesischen Ebene .


Aufgabe

Es sei ein Punkt in der Ebene gegeben. Skizziere die Punkte


Aufgabe

Es sei ein Punkt in der Ebene gegeben. Skizziere die Menge aller Punkte


Aufgabe

Markiere zwei Punkte und in der kartesischen Ebene und addiere sie.


Aufgabe

Zeige, dass der Zahlenraum zu einem Körper mit der komponentenweisen Addition und der Skalarmultiplikation die Eigenschaften

  1. ,
  2. ,
  3. ,

erfüllt.


Aufgabe

Im Rahmen einer Werbeaktion verkauft ein Baumarkt Schraubensets, die jeweils große, mittlere und kleine Schrauben enthalten. Set enthält große, mittlere und kleine Schrauben, Set enthält große, mittlere und kleine Schrauben, Set enthält große, mittlere und kleine Schrauben. Da das Angebot sehr günstig ist, läuft der Verkauf hervorragend. Allerdings gibt es kaum jemand, der genau eines der vorgebenen Sets brauchen kann, daher entwickelt sich auf dem Parkplatz eine rege Tauschbörse für Schrauben. Lässt sich jeder Schraubenwunsch mit den gegebenen Sets exakt erfüllen?


Aufgabe

Finde für die Vektoren

im eine nichttriviale Darstellung des Nullvektors.


Aufgabe

Finde für die Vektoren

im eine nichttriviale Darstellung des Nullvektors.


Aufgabe

Es sei ein Körper und der -dimensionale Zahlenraum. Es sei , , eine Familie von Vektoren im und ein weiterer Vektor. Es sei vorausgesetzt, dass die Familie

ein Erzeugendensystem von ist und dass sich als Linearkombination der , , darstellen lässt. Zeige, dass dann schon , , ein Erzeugendensystem von ist.


Aufgabe

Zeige, dass im die drei Vektoren

eine Basis bilden.


Aufgabe

Bestimme, ob im die drei Vektoren

eine Basis bilden.


Aufgabe

Es sei ein Körper und seien . Zeige, dass der Matrizenraum in natürlicher Weise ein Vektorraum ist.


Aufgabe *

Berechne das Matrizenprodukt


Aufgabe

Berechne das Matrizenprodukt


Aufgabe *

Zeige, dass die Matrizenmultiplikation von quadratischen Matrizen im Allgemeinen nicht kommutativ ist.


Aufgabe

Bestimme das Matrizenprodukt

wobei links der -te Standardvektor (der Länge ) als Zeilenvektor und rechts der -te Standardvektor (ebenfalls der Länge ) als Spaltenvektor aufgefasst wird.


Aufgabe

Es sei eine -Matrix. Zeige, dass das Matrizenprodukt mit dem -ten Standardvektor (als Spaltenvektor aufgefasst) die -te Spalte von ergibt. Was ist , wobei der -te Standardvektor (als Zeilenvektor aufgefasst) ist?


Zu einer quadratischen Matrix bezeichnet man mit die -fache Verknüpfung (Matrizenmultiplikation) mit sich selbst. Man spricht dann auch von -ten Potenzen der Matrix.

Aufgabe

Berechne zur Matrix

die Potenzen


Aufgabe

Es sei

eine Diagonalmatrix und eine -Matrix. Beschreibe und .


Aufgabe

Es sei

eine Diagonalmatrix und ein -Tupel über einem Körper , und es sei ein Variablentupel. Welche Besonderheiten erfüllt das lineare Gleichungssystem

und wie löst man es?




Aufgaben zum Abgeben

Aufgabe (2 Punkte)

Drücke in den Vektor

als Linearkombination der Vektoren

aus.


Aufgabe (3 Punkte)

Finde für die Vektoren

im eine nichttriviale Darstellung des Nullvektors.


Aufgabe (3 Punkte)

Wir betrachten die Matrix

über einem Körper . Zeige, dass die vierte Potenz von gleich ist, also


Für die folgende Aussage wird sich bald ein einfacher Beweis über die Beziehung zwischen Matrizen und linearen Abbildungen ergeben.

Aufgabe (4 Punkte)

Zeige, dass die Matrizenmultiplikation assoziativ ist. Genauer: Es sei ein Körper und es sei eine -Matrix, eine -Matrix und eine -Matrix über . Zeige, dass ist.


Aufgabe (4 Punkte)

Es sei . Finde und beweise eine Formel für die -te Potenz der Matrix


Aufgabe (2 Punkte)

Finde neben den beiden Matrizen und vier weitere Matrizen mit der Eigenschaft .




<< | Kurs:Grundkurs Mathematik (Osnabrück 2022-2023)/Teil II | >>
PDF-Version dieser Vorlesung
Zur Vorlesung (PDF)