Kurs:Mathematik (Osnabrück 2009-2011)/Teil II/Arbeitsblatt 31/kontrolle

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Aufwärmaufgaben

Aufgabe Referenznummer erstellen

Bestimme das Treppenintegral über zur Treppenfunktion, die durch

gegeben ist.


Aufgabe Referenznummer erstellen

Man gebe ein Beispiel für eine Funktion an, die nur endlich viele Werte annimmt, aber keine Treppenfunktion ist.


Aufgabe Referenznummer erstellen

Es seien

zwei Treppenfunktionen. Zeige, dass dann auch

  1. ,
  2. ,
  3. ,
  4. ,

Treppenfunktionen sind.


Aufgabe Referenznummer erstellen

Es sei

eine Treppenfunktion und

eine Funktion. Zeige, dass die Hintereinanderschaltung ebenfalls eine Treppenfunktion ist.


Aufgabe Referenznummer erstellen

Berechne das bestimmte Integral

explizit über obere und untere Treppenfunktionen.


Aufgabe Referenznummer erstellen

Berechne das bestimmte Integral

explizit über obere und untere Treppenfunktionen.


Aufgabe Referenznummer erstellen

Beweise durch Induktion die folgende Formel.


Aufgabe Aufgabe 31.8 ändern

Sei ein kompaktes Intervall und sei

eine Funktion. Es gebe eine Folge von Treppenfunktionen  mit und eine Folge von Treppenfunktionen  mit . Es sei vorausgesetzt, dass die beiden zugehörigen Folgen der Treppenintegrale konvergieren und dass ihre Grenzwerte übereinstimmen. Zeige, dass dann Riemann-integrierbar ist und dass

gilt.


Aufgabe Aufgabe 31.9 ändern

Sei ein kompaktes Intervall und sei

eine Funktion. Zeige, dass die folgenden Aussagen äquivalent sind.

  1. Die Funktion ist Riemann-integrierbar.
  2. Es gibt eine Unterteilung derart, dass die einzelnen Einschränkungen Riemann-integrierbar sind.
  3. Für jede Unterteilung sind die Einschränkungen Riemann-integrierbar.


Aufgabe Referenznummer erstellen

Es sei ein kompaktes Intervall und es seien zwei Riemann-integrierbare Funktionen. Beweise die folgenden Aussagen.

  1. Ist für alle , so ist .
  2. Ist für alle , so ist .
  3. Es ist .
  4. Für ist .


Aufgabe Referenznummer erstellen

Es sei ein kompaktes Intervall und eine Riemann-integrierbare Funktion. Zeige, dass

gilt.


Aufgabe Referenznummer erstellen

Bringe die Begriffe Steuersatz und Grenzsteuersatz mit Treppenfunktionen und Treppenintegralen in Verbindung.

Steuertabelle 2009 single zve 55.jpg




Aufgaben zum Abgeben

Aufgabe (5 Punkte)Referenznummer erstellen

Man gebe ein Beispiel einer stetigen Funktion

und einer Treppenfunktion

derart, dass die Hintereinanderschaltung keine Treppenfunktion ist.


Aufgabe (4 Punkte)Referenznummer erstellen

Sei ein kompaktes Intervall und sei

eine monotone Funktion. Zeige, dass Riemann-integrierbar ist.


Aufgabe (3 Punkte)Referenznummer erstellen

Bestimme das bestimmte Integral

in Abhängigkeit von und explizit über obere und untere Treppenfunktionen.


Aufgabe (4 Punkte)Referenznummer erstellen

Berechne das bestimmte Integral

explizit über obere und untere Treppenfunktionen.


Aufgabe (3 Punkte)Referenznummer erstellen

Zeige, dass für die Funktion

weder das Unterintegral noch das Oberintegral existiert.


Aufgabe (6 Punkte)Referenznummer erstellen

Zeige, dass für die Funktion

das Unterintegral existiert, aber nicht das Oberintegral.


Aufgabe (8 Punkte)Referenznummer erstellen

Berechne das bestimmte Integral

explizit über obere und untere Treppenfunktionen.


Aufgabe (5 Punkte)Referenznummer erstellen

Wir betrachten die Funktion

mit

Zeige, dass Riemann-integrierbar ist, dass es aber keine Treppenfunktion mit der Eigenschaft gibt, dass für alle ist.


Aufgabe (6 Punkte)Referenznummer erstellen

Es sei ein kompaktes Intervall und es seien zwei Riemann-integrierbare Funktionen. Zeige, dass auch Riemann-integrierbar ist.



<< | Kurs:Mathematik (Osnabrück 2009-2011)/Teil II | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)