Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II/Arbeitsblatt 36/kontrolle
- Aufwärmaufgaben
Zeige, dass das Integral zu einer stetigen Kurve
in einem endlichdimensionalen reellen Vektorraum unabhängig von der gewählten Basis ist.
Formuliere und beweise den Hauptsatz der Infinitesimalrechnung für stetige Kurven
wobei ein endlichdimensionaler reeller Vektorraum sei.
Wir betrachten die Abbildung
Bestimme die Komponenten dieser Abbildung bezüglich der Basis
Bestimme mit beiden Basen das Integral dieser Kurve über , und bestätige, dass die Ergebnisse übereinstimmen.
Es seien natürliche Zahlen. Wir betrachten die stetig differenzierbare Kurve
Berechne das Wegintegral längs dieses Weges zum Vektorfeld
Es sei
gegeben. Berechne das Wegintegral längs dieses Weges zu den folgenden Vektorfeldern.
a) ,
b) ,
c) ,
d) .
Es sei
ein stetiges Vektorfeld und
ein stetig differenzierbarer Weg. Es sei eine Stammfunktion zu . Zeige
Wir betrachten das identische Vektorfeld
Zeige, dass für je zwei Punkte und für jeden stetig differenzierbaren Weg
mit und das Wegintegral gleich ist.
- Aufgaben zum Abgeben
Aufgabe (5 Punkte)Referenznummer erstellen
Aufgabe (5 Punkte)Referenznummer erstellen
Wir betrachten die differenzierbare Kurve
und das Vektorfeld
a) Berechne das Wegintegral .
b) Es sei
und . Berechne (unabhängig von a))
Aufgabe (4 Punkte)Referenznummer erstellen
Wir betrachten das Vektorfeld
Bestimme das Wegintegral längs des gegen den Uhrzeigersinn einmal durchlaufenen Einheitsquadrates.
Aufgabe (6 Punkte)Referenznummer erstellen
Wir betrachten das Vektorfeld
Bestimme das Wegintegral zu diesem Vektorfeld längs des linearen Weges von nach .
Aufgabe (5 Punkte)Referenznummer erstellen
Wir betrachten das konstante Vektorfeld
Zeige, dass für zwei Punkte und jeden stetig differenzierbaren Weg mit und das Wegintegral gleich ist.
<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II | >> |
---|