Zum Inhalt springen

Matrix/Rang/Spalten und Zeilen/Invertierbarkeit/Einführung/Textabschnitt

Aus Wikiversity


Es sei ein Körper und sei eine -Matrix über . Dann nennt man die Dimension des von den Spalten erzeugten Untervektorraums von den (Spalten-)Rang der Matrix, geschrieben



Es sei ein Körper und es seien und Vektorräume über der Dimension bzw. . Es sei

eine lineare Abbildung, die bezüglich zweier Basen durch die Matrix beschrieben werde.

Dann gilt

Beweis

Siehe Aufgabe.


Zur Formulierung der nächsten Aussage führen wir den Zeilenrang einer -Matrix als die Dimension des von den Zeilen erzeugten Untervektorraumes von ein.



Es sei ein Körper und sei eine -Matrix über .

Dann stimmt der Spaltenrang mit dem Zeilenrang überein.

Wenn man im Sinne von Fakt mittels elementarer Zeilenumformungen in eine Matrix in Stufenform transformiert, so ist der Rang gleich der Anzahl der relevanten Zeilen von .

Es sei die Anzahl der relevanten Zeilen in der durch elementare Zeilenumformungen gewonnenen Matrix in Stufenform. Wir zeigen, dass diese Zahl sowohl mit dem Spaltenrang als auch mit dem Zeilenrang von und von übereinstimmt. Bei elementaren Zeilenumformungen ändert sich der von den Zeilen erzeugte Untervektorraum nicht, und damit ändert sich auch nicht der Zeilenrang. Der Zeilenrang von stimmt also mit dem Zeilenrang von überein. Diese Matrix hat den Zeilenrang , da die ersten Zeilen linear unabhängig sind und ansonsten nur Nullzeilen auftauchen. Sie hat aber auch den Spaltenrang , da die Spalten, in denen eine neue Stufe auftritt, linear unabhängig sind und die weiteren Spalten Linearkombinationen dieser Spalten sind. Die Aufgabe zeigt, dass sich bei elementaren Zeilenumformungen auch der Spaltenrang nicht ändert.


Beide Ränge stimmen also überein, sodass wir im Folgenden nur noch vom Rang einer Matrix sprechen werden.



Es sei ein Körper und sei eine -Matrix über . Dann sind folgende Aussagen äquivalent.

  1. ist invertierbar.
  2. Der Rang von ist .
  3. Die Zeilen von sind linear unabhängig.
  4. Die Spalten von sind linear unabhängig.

Die Äquivalenz von (2), (3) und (4) folgt aus der Definition und aus Fakt.
Für die Äquivalenz von (1) und (2) betrachten wir die durch definierte lineare Abbildung

Die Eigenschaft, dass der Spaltenrang gleich ist, ist äquivalent zur Surjektivität der Abbildung, die aufgrund von Fakt äquivalent zur Bijektivität der Abbildung ist. Die Bijektivität ist nach Fakt äquivalent zur Invertierbarkeit der Matrix.