Borel-Lebesgue-Maß/Translationsinvarianz/Textabschnitt

Aus Wikiversity


Satz  

Das Borel-Lebesgue-Maß auf

ist translationsinvariant.

Beweis  

Zu betrachten wir die Translationsabbildung

Es sei das Bildmaß unter der Translationsabbildung. Dieses ist wieder ein -endliches Maß. Für jeden Quader ist bzw. wieder ein achsenparalleler Quader, wobei sich die Seitenlängen nicht ändern. Daher ist

Das Maß stimmt also auf den Quadern mit überein und daher ist nach Fakt überhaupt


Die Translationsinvarianz des Borel-Lebesgue-Maßes kann man auch so formulieren, dass jede Translation eine maßtreue Abbildung ist.


Definition  

Es sei ein endlichdimensionaler reeller Vektorraum und seien linear unabhängige Vektoren gegeben. Dann nennt man

das von den erzeugte Parallelotop.



Lemma  

Es sei ein translationsinvariantes Maß auf dem , das auf dem Einheitswürfel endlich sei. Es sei ein echter Untervektorraum.

Dann ist .

Beweis  

 Es sei ein Untervektorraum der Dimension und nehmen wir an, dass ist. Es sei eine Basis von und

das davon erzeugte -dimensionale Parallelotop. Dies lässt sich durch endlich viele verschobene Einheitswürfel überpflastern und besitzt demnach ein endliches Maß. Die verschobenen Parallelotope

besitzen wegen der Translationsinvarianz alle dasselbe Maß und bilden eine Überpflasterung von . Da es abzählbar viele sind, muss gelten. Es sei nun eine Ergänzung der Basis zu einer Basis von , und sei

das zugehörige -dimensionale Parallelotop. Für dieses ist

Wir betrachten nun die abzählbar unendlich vielen Parallelotope

Diese liegen alle innerhalb von und besitzen wegen der Translationsinvarianz alle das gleiche Maß wie . Ferner sind sie paarweise disjunkt, da andernfalls ein nichttriviales Vielfaches von zu gehören würde. Aus

folgt , ein Widerspruch.


Allgemein nennt man Unterräume (und zwar nicht nur Untervektorräume, sondern auch affine Unterräume, also verschobene Untervektorräume) des der Dimension Hyperebenen. Insbesondere besitzen Hyperebenen das Maß .



Satz  

Das Borel-Lebesgue-Maß

ist das einzige translationsinvariante Maß auf , das auf dem Einheitswürfel den Wert besitzt.

Beweis  

Das Borel-Lebesgue-Maß erfüllt nach Fakt diese Bedingungen. Es sei ein solches Maß. Nach Fakt ist es egal, ob diese Bedingung an den abgeschlossenen, den offenen oder einen halboffenen Einheitswürfel gestellt wird. Wir werden durchgehend mit rechtsseitig offenen Quadern arbeiten. Da der durch abzählbar viele Verschiebungen des Einheitswürfels überdeckt wird, die wegen der Translationsinvarianz von alle das gleiche Maß besitzen, ist -endlich. Wir müssen zeigen, dass mit übereinstimmt, wobei es aufgrund des Eindeutigkeitssatzes genügt, die Gleichheit auf einem durchschnittsstabilen Erzeugendensystem für die Borelmengen nachzuweisen. Ein solches System bilden die Quader der Form mit rationalen Ecken. Wegen der Translationsinvarianz von besitzt ein solcher Quader das gleiche Maß wie der verschobene Quader . Wir schreiben einen solchen Quader unter Verwendung eines Hauptnenners als mit . Dieser Quader setzt sich disjunkt aus Quadern (nämlich mit ) zusammen, die alle das gleiche -Maß haben, da sie ineinander verschoben werden können. Das -Maß des Quaders ist also das -fache des -Maßes des Quaders . Da sich der Einheitswürfel aus verschobenen Kopien dieses kleineren Würfels zusammensetzt, muss und damit

sein.



Korollar  

Es sei ein translationsinvariantes Maß auf , das auf dem Einheitswürfel ein endliches Maß habe.

Dann gibt es eine eindeutig bestimmte Zahl mit .

Beweis  

Es sei , wobei der Einheitswürfel im sei. Wenn ist, so liegt das Nullmaß vor, da sich der mit abzählbar vielen verschobenen Einheitswürfeln überdecken lässt, die wegen der Translationsinvarianz ebenfalls das Maß haben. Dann hat der Gesamtraum das Maß und damit hat jede messbare Teilmenge das Maß . Es sei also . In diesem Fall betrachten wir das durch

definierte (umskalierte) Maß. Dieses ist nach wie vor translationsinvariant und besitzt auf dem Einheitswürfel den Wert . Nach Fakt ist also und somit ist .