Kurs:Analysis (Osnabrück 2014-2016)/Teil I/Arbeitsblatt 18/kontrolle

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Übungsaufgaben

Die folgende Aufgabe löse man direkt ohne Ableitungsregeln und durch Induktion mit Hilfe der Produktregel.

Aufgabe Referenznummer erstellen

Bestimme die Ableitung der Funktion

 für jedes .


Aufgabe Referenznummer erstellen

Bestimme die Ableitung der Funktion

 für jedes .


Aufgabe Referenznummer erstellen

Bestimme die Ableitung der Funktion

 für jedes .


Aufgabe Referenznummer erstellen

Bestimme die Ableitung der Funktion

 für jedes .


Aufgabe * Referenznummer erstellen

Bestimme direkt (ohne Verwendung von Ableitungsregeln) die Ableitung der Funktion

in einem beliebigen Punkt .


Aufgabe * Referenznummer erstellen

Wir betrachten die Funktion

Bestimme die Tangenten an , die lineare Funktionen sind (die also durch den Nullpunkt verlaufen).


Aufgabe Referenznummer erstellen

Zeige, dass die reelle Betragsfunktion

im Nullpunkt nicht differenzierbar ist.


Aufgabe * Referenznummer erstellen

Beweise die Produktregel für differenzierbare Funktionen unter Verwendung der Regel

mit Hilfe von


Aufgabe Referenznummer erstellen

Bestimme die Ableitung der Funktion


Aufgabe Referenznummer erstellen

Zeige, dass die Ableitung einer rationalen Funktion wieder eine rationale Funktion ist.


Aufgabe Referenznummer erstellen

Es sei und . Bestimme die Ableitung der Hintereinanderschaltung direkt und mittels der Kettenregel.


Aufgabe * Referenznummer erstellen

Es sei und .

a) Bestimme die Ableitung von und von .

b) Berechne die Hintereinanderschaltung .

c) Bestimme die Ableitung von direkt.

d) Bestimme die Ableitung von mittels der Kettenregel.


Aufgabe Referenznummer erstellen

Es sei und . Bestimme die Ableitung der Hintereinanderschaltung direkt und mittels der Kettenregel.


Aufgabe Referenznummer erstellen

Zeige, dass ein Polynom genau dann einen Grad besitzt (oder ist), wenn die -te Ableitung von das Nullpolynom ist.


Aufgabe * Referenznummer erstellen

Es seien

zwei differenzierbare Funktionen und sei

a) Drücke die Ableitung mit den Ableitungen von und aus.

b) Sei nun

Berechne auf zwei verschiedene Arten, einerseits über und andererseits über die Formel aus Teil .

Aufgabe * Referenznummer erstellen

Es sei

eine differenzierbare Funktion. Zeige durch Induktion, dass für die -fache Hintereinanderschaltung ()

die Beziehung

gilt.


Aufgabe Referenznummer erstellen

Zeige, dass die Funktion

differenzierbar ist, aber nicht zweimal differenzierbar.


Linie und Viertelkreis.png

Aufgabe Referenznummer erstellen

Die Funktion

sei für negatives konstant gleich und folge für dem unteren rechten Viertelkreis mit Mittelpunkt und Radius . Bestimme den Grad der Differenzierbarkeit dieser Funktion.


Aufgabe * Referenznummer erstellen

Es sei und seien

zwei -mal differenzierbare Funktionen. Zeige, dass

gilt.


Aufgabe Referenznummer erstellen

Es sei

ein Polynom vom Grad und die Tangente an im Punkt . Zeige die Beziehung

mit einem Polynom vom Grad .


Aufgabe * Referenznummer erstellen

Es sei

ein Polynom vom Grad , ein Punkt und die Tangente an im Punkt . Zeige die Beziehung

mit einem Polynom vom Grad .




Aufgaben zum Abgeben

Aufgabe (3 Punkte)Referenznummer erstellen

Bestimme die Ableitung der Funktion


wobei die Menge sei, auf der das Nennerpolynom nicht verschwindet.


Aufgabe (4 Punkte)Referenznummer erstellen

Bestimme, ob die komplexe Konjugation

differenzierbar ist oder nicht.


Aufgabe (3 Punkte)Aufgabe 18.24 ändern

Sei offen und seien

differenzierbare Funktionen. Beweise die Formel


Aufgabe (4 Punkte)Referenznummer erstellen

Es sei ein Polynom, und . Zeige, dass genau dann ein Vielfaches von ist, wenn eine Nullstelle sämtlicher Ableitungen ist.


Aufgabe (4 Punkte)Referenznummer erstellen

Es sei

eine rationale Funktion. Zeige, dass genau dann ein Polynom ist, wenn es eine (höhere) Ableitung mit gibt.



<< | Kurs:Analysis (Osnabrück 2014-2016)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)