Zum Inhalt springen

Kurs:Elemente der Algebra (Osnabrück 2024-2025)/Arbeitsblatt 12

Aus Wikiversity



Übungsaufgaben

Wir betrachten die Untergruppe und die zugehörige Äquivalenzrelation.

a) Skizziere die Punkte (eine sinnvolle Auswahl) aus (als Punkte in ) mit einer Farbe.

b) Skizziere mit verschiedenen Farben die verschiedenen Äquivalenzklassen (Nebenklassen).

c) Wie viele Äquivalenzklassen gibt es? Beschreibe ein Repräsentantensystem.

d) Erstelle eine Verknüpfungstabelle für die Farben. Welche Farben sind zueinander invers?



Wir betrachten in der Gruppe die Untergruppe

und die zugehörige Äquivalenzrelation.

a) Skizziere die Punkte (eine sinnvolle Auswahl) aus (als Punkte in ) mit einer Farbe.

b) Skizziere mit verschiedenen Farben die verschiedenen Äquivalenzklassen (Nebenklassen).

c) Wie viele Äquivalenzklassen gibt es? Beschreibe ein Repräsentantensystem.

d) Erstelle eine Verknüpfungstabelle für die Farben. Welche Farben sind zueinander invers?



Bestimme für jedes Element der Restklassengruppe aus Aufgabe 12.2 die Ordnung.



Bestimme die Restklassengruppe zu .



Finde in der Permutationsgruppe einen Normalteiler und bestimme die zugehörige Restklassengruppe.



Bringe die Restklassengruppe mit der in Aufgabe 1.17 direkt eingeführten Gruppe in Verbindung.



Zeige, dass es in der Restklassengruppe zu jedem Elemente gibt, deren Ordnung gleich ist.



Zeige, dass es keine Untergruppe derart gibt, dass

ein Isomorphismus ist.



Es sei eine Gruppe und ein Element mit dem (nach Lemma 10.7) zugehörigen Gruppenhomomorphismus

Beschreibe die kanonische Faktorisierung von gemäß Satz 12.8.



Es sei eine Gruppe und ein Element mit endlicher Ordnung. Zeige, dass die Ordnung von mit dem minimalen übereinstimmt, zu dem es einen Gruppenhomomorphismus

gibt, in dessen Bild das Element liegt.



Zeige mit Hilfe der Homomorphiesätze, dass zyklische Gruppen mit der gleichen Ordnung isomorph sind.




Zeige, dass für jede reelle Zahl die Restklassengruppen untereinander isomorph sind.



Es seien und Gruppen und seien und Gruppenhomomorphismen mit surjektiv und mit . Bestimme den Kern des induzierten Homomorphismus



Es sei eine Primzahl. Definiere einen Gruppenhomomorphismus

der und alle anderen Primzahlen auf schickt.

Bestimme auch den Kern dieses Gruppenhomomorphismus.


Es seien und Gruppen und seien und Normalteiler. Zeige, dass ein Normalteiler in ist und dass eine Isomorphie

vorliegt.


Eine Teilmenge heißt dicht, wenn es zu jeder reellen Zahl und jedem Elemente mit

gibt.



Es sei eine (additive) Untergruppe der reellen Zahlen . Zeige, dass entweder mit einer eindeutig bestimmten nichtnegativen reellen Zahl ist, oder aber dicht in ist.




Aufgaben zum Abgeben

Aufgabe (4 (1+1+1+1) Punkte)

Wir betrachten in der Gruppe die Untergruppe

und die zugehörige Äquivalenzrelation.

a) Skizziere die Punkte (eine sinnvolle Auswahl) aus (als Punkte in ) mit einer Farbe.

b) Skizziere mit verschiedenen Farben die verschiedenen Äquivalenzklassen (Nebenklassen).

c) Wie viele Äquivalenzklassen gibt es? Beschreibe ein Repräsentantensystem.

d) Erstelle eine Verknüpfungstabelle für die Farben. Welche Farben sind zueinander invers?



Aufgabe (3 Punkte)

Es seien und Gruppen mit der Produktgruppe . Zeige, dass die Gruppe ein Normalteiler in ist, und dass die Restklassengruppe kanonisch isomorph zu ist.



Aufgabe (4 Punkte)

Bestimme die Gruppenhomomorphismen zwischen zwei zyklischen Gruppen. Welche sind injektiv und welche sind surjektiv?



Aufgabe (2 Punkte)

Zeige, dass es eine Gruppe und einen Gruppenhomomorphismus

mit der Eigenschaft gibt, dass genau dann rational ist, wenn ist.



Aufgabe (3 Punkte)

Bestimme sämtliche Gruppen mit vier Elementen.




<< | Kurs:Elemente der Algebra (Osnabrück 2024-2025) | >>
PDF-Version dieses Arbeitsblattes
Zur Vorlesung (PDF)