Kurs:Grundkurs Mathematik (Osnabrück 2016-2017)/Teil II/Vorlesung 57
- Unabhängige Ereignisse
Man spricht auch von stochastischer Unabhängigkeit. Wenn die Ereignisse nicht unabhängig sind, werden sie abhängig genannt.
Es sei ein endlicher Wahrscheinlichkeitsraum.
- Jedes Ereignis ist zu und zu unabhängig.
- Wenn die Ereignisse und unabhängig sind, so sind auch und unabhängig.
- Wenn ein Ereignis zu sich selbst unabhängig ist, so ist
- Für die leere Menge gilt
und für die Gesamtmenge ist
- Seien
und
unabhängig. Dann ist nach
Lemma 55.7 (3)
- Die Unabhängigkeit von mit sich selbst bedeutet
diese Gleichung erfüllen nur die Zahlen und .
Wir betrachten einen Würfelwurf mit dem Laplace-Raum und dabei die Ereignisse
und
Die Ereignisse und sind unabhängig, da
und somit
Ebenso sind und unabhängig (dies folgt auch aus Lemma 57.2 (2)). Dagegen sind und nicht unabhängig, da
ist, aber beide Ereignisse eine positive Wahrscheinlichkeit haben.
In einem Papageienhaus sind die beiden Geschlechter gleichmäßig verteilt und ebenso sind die Farben rot, gelb und grün gleichmäßig und unabhängig vom Geschlecht verteilt. Dann ist die Wahrscheinlichkeit, dass ein zufällig ausgewählter Papagei ein rotes Weibchen ist, gleich
Wir betrachten die Ziehung der Lottozahlen. Sind die Ereignisse, dass zwei bestimmte Zahlen gezogen werden, unabhängig voneinander? Dazu müssen wir die relevanten Wahrscheinlichkeiten berechnen. Die Wahrscheinlichkeit, dass eine bestimmte Zahl, sagen wir die gezogen wird, ist . Dies ergibt sich beispielsweise aus
Diese Wahrscheinlichkeit ist für jede Zahl gleich. Die Wahrscheinlichkeit, dass zwei Zahlen gezogen werden, sagen wir die und die , ist
Die Produktwahrscheinlichkeit der beiden einzelnen Ereignisse ist hingegen
Die Ereignisse sind also nicht unabhängig.
Es sei ein Laplace-Raum gegeben, dessen Anzahl eine Primzahl ist. Dann sind zwei Ereignisse nur dann unabhängig, wenn eines von ihnen leer oder gleich ist. Die Unabhängigkeitsbedingung bedeutet ja für einen Laplaceraum
Dies bedeutet
Somit teilt die Primzahl das Produkt . Nach dem Lemma von Euklid kann das nur sein, wenn einen der Faktoren teilt. Dann muss aber die Anzahl eines Faktors, sagen wir von , gleich oder sein, was oder bedeutet.
Zu einer Produktmenge und zu heißt die Abbildung
die -te Projektion. Zu einer Teilmenge nennen wir das Urbild
auch den Zylinder über .
Es seien endliche Wahrscheinlichkeitsräume und
der Produktraum.
Dann sind zu Ereignissen und mit die Zylindermengen und unabhängig.
Diese Aussage bedeutet beispielsweise, dass bei der Hintereinanderausführung von Münzwürfen der -te Münzwurf vom -ten Münzwurf
()
unabhängig ist. Dies ist natürlich intuitiv klar, die vorstehende Aussage ist eine Bestätigung dafür, dass die Modellierung eines wiederholten Experimentes durch einen Produktraum und das oben formulierte Konzept der Unabhängigkeit sinnvoll sind.
Es sei ein endlicher Wahrscheinlichkeitsraum gegeben. Die Ereignisse
heißen paarweise unabhängig, wenn
für alle ist.
Das bedeutet einfach, dass je zwei Mengen der unabhängig sind.
Es sei ein endlicher Wahrscheinlichkeitsraum gegeben. Die Ereignisse heißen vollständig unabhängig, wenn für jedes , , und jede -elementige Teilmenge die Gleichheit
gilt.
Da insbesondere für zweielementige Teilmengen diese Gleichung gelten muss, impliziert die vollständige Unabhängigkeit die paarweise Unabhängigkeit. Wenn die Form
hat, so bedeutet die Unabhängigkeit einfach
Das folgende Beispiel zeigt, dass die vollständige Unabhängigkeit echt stärker als die paarweise Unabhängigkeit ist.
Wir betrachten einen dreifachen Münzwurf, also den Wahrscheinlichkeitsraum mit . Das Ereignis, dass bei den ersten beiden Würfen das gleiche Ergebnis herauskommt (also beide Mal Kopf oder beidemal Zahl), sei mit bezeichnet, das Ereignis, dass beim ersten und beim dritten Wurf das gleiche Ergebnis herauskommt, sei mit bezeichnet, und das Ereignis, dass beim zweiten und beim dritten Wurf das gleiche Ergebnis herauskommt, sei mit bezeichnet. Wir behaupten, dass diese Ereignisse paarweise unabhängig sind, aber nicht vollständig unabhängig. Zu gehören genau die Elementarereignisse der Form und , das sind vier Stück. Somit ist die Wahrscheinlichkeit der Einzelereignisse stets . Das Ereignis und tritt genau dann ein, wenn alle drei Münzwürfe das gleiche Ergebnis haben, also nur bei oder . Die Wahrscheinlichkeit davon ist also
Entsprechendes gilt für die Paare und und und . Wenn man dagegen alle drei Ereignisse miteinander schneidet, so ist
Die Wahrscheinlichkeit davon ist nach wie vor , aber das Produkt der drei Einzelwahrscheinlichkeiten ist
Es werde eine Münze -mal hintereinander geworfen. Wir interessieren uns für die Ereignisse , dass sich das Ergebnis vom -ten zum -ten Wurf ändert (). Sind diese Ereignisse vollständig unabhängig? Das ist nicht so unmittelbar klar, da ja und beide auf den -ten Wurf Bezug nehmen. Trotzdem sind diese Ereignisse vollständig unabhängig. Es sei dazu fixiert. Ein Wechsel an der -ten Stelle (verglichen zum Vorgängerwurf) hat die Wahrscheinlichkeit . Wenn gelten soll, so ist der -te Würfelwurf durch das Ergebnis des -ten Würfelwurfs festgelegt. Wenn das Ereignis gelten soll, so gibt es keinerlei Bedingung an den Stellen mit für alle , während dadurch an den Stellen alles fixiert ist. Somit gibt es günstige Kombinationen für dieses Durchschnittsereignis. Seine Wahrscheinlichkeit ist somit
was mit dem Produkt der Einzelwahrscheinlichkeiten übereinstimmt.
Es seien endliche Wahrscheinlichkeitsräume und
der Produktraum. Es seien Ereignisse , ,..., gegeben und es seien die zugehörigen Zylindermengen im Produktraum, also
Dann sind die Ereignisse vollständig unabhängig.
Es sei . Dann ist
wobei
ist, falls ist, und andernfalls
Nach Lemma 56.4 (2) ist
was die vollständige Unabhängigkeit bedeutet.
<< | Kurs:Grundkurs Mathematik (Osnabrück 2016-2017)/Teil II | >> |
---|