Kurs:Mathematik (Osnabrück 2009-2011)/Teil II/Vorlesung 50

Aus Wikiversity



Diffeomorphismen

Der Satz über die lokale Umkehrbarkeit gibt Anlass zu folgender Definition.


Definition  

Es seien und endlichdimensionale reelle Vektorräume und und offene Teilmengen. Eine Abbildung

heißt -Diffeomorphismus, wenn bijektiv und -mal stetig differenzierbar ist, und wenn die Umkehrabbildung

ebenfalls -mal stetig differenzierbar ist.

Der Satz über die lokale Umkehrbarkeit besagt also, dass eine stetig differenzierbare Abbildung mit invertierbarem totalen Differential lokal (!) ein -Diffeomorphismus ist (es gibt auch -Versionen von diesem Satz). Zwei offene Mengen und heißen -diffeomorph, wenn es einen -Diffeomorphismus zwischen ihnen gibt.


Definition  

Es seien und endlichdimensionale reelle Vektorräume, sei offen, sei und sei

eine in differenzierbare Abbildung. Dann heißt ein regulärer Punkt von , wenn

ist. Andernfalls heißt ein kritischer Punkt oder ein singulärer Punkt.

Bemerkung  

Eine differenzierbare Abbildung ist genau dann regulär in einem Punkt , wenn das totale Differential den maximal möglichen Rang besitzt. Der Rang ist nach Korollar 14.2 und nach Lemma 14.3 gleich dem Spalten- bzw. Zeilenrang einer beschreibenden Matrix. Daher ist der Rang maximal gleich der Anzahl der Zeilen und maximal gleich der Anzahl der Spalten, also maximal gleich dem Minimum der beiden Dimensionen.

Bei ist ein regulärer Punkt genau dann, wenn nicht die Nullabbildung ist. Daher stimmt diese Definition von regulär mit Definition 46.5 überein. Bei bedeutet die Regularität wiederum, dass ist. Generell bedeutet bei die Regularität, dass injektiv ist, und bei bedeutet die Regularität, dass surjektiv ist. Insbesondere bedeutet bei die Regularität in , dass das totale Differential bijektiv ist und dass daher die Voraussetzung im Satz über die lokale Umkehrbarkeit erfüllt ist.



Beispiel  

Wir betrachten die Abbildung

Diese Abbildung ist differenzierbar und die Jacobi-Matrix in einem Punkt ist

Die Determinante davon ist

so dass die Bedingung

die regulären Punkte der Abbildung charakterisiert. Im Nullpunkt liegt beispielsweise ein regulärer Punkt vor, so dass dort aufgrund des Satzes über die lokale Umkehrbarkeit lokal eine Bijektion vorliegt, d.h. es gibt offene Umgebungen und von derart, dass die eingeschränkte Abbildung

bijektiv ist (mit stetig differenzierbarer Umkehrabbildung).

Wie groß kann dabei gewählt werden? Wir beschränken uns auf offene Ballumgebungen . Bei enthält eine solche Kreisscheibe zwei Punkte der Form

Diese werden unter auf

abgebildet, also auf den gleichen Punkt. Daher ist die Einschränkung der Abbildung auf eine solche Kreisscheibe nicht injektiv, und auf einer solchen Menge kann es keine Umkehrabbildung geben.

Betrachten wir hingegen

und

Da keine kritischen Punkte enthält, ist nach Aufgabe 50.9 das Bild offen. Die eingeschränkte Abbildung ist nach Definition von surjektiv, so dass nur die Injektivität zu untersuchen ist.

Das Gleichungssystem

führt auf

und auf

Seien und aus mit

gegeben. Dann ist

und somit

Bei folgt direkt . Bei muss

sein. Dies bedeutet und ebenso . Wegen

und müssen und das gleiche Vorzeichen besitzen. Daher müssen auch und das gleiche Vorzeichen besitzen. Daraus folgt aber

so dass es in der offenen Kreisumgebung mit Radius keine zwei verschiedenen Urbilder geben kann. Mit liegt also eine Bijektion vor.


Wir haben schon für die komplexen Zahlen Polarkoordinaten verwendet, siehe Satz 29.12. Hier besprechen wir Polarkoordinaten in Hinblick auf lokale Umkehrbarkeit.


Beispiel  

Die Abbildung

heißt Polarkoordinatenauswertung. Sie ordnet einem Radius und einem Winkel (wegen diesen Bedeutungen schränkt man den Definitionsbereich häufig ein) denjenigen Punkt der Ebene (in kartesischen Koordinaten) zu, zu dem man gelangt, wenn man in Richtung des Winkels (gemessen von der -Achse aus gegen den Uhrzeigersinn) die Strecke zurücklegt. Sie ist in jedem Punkt stetig differenzierbar mit der Jacobi-Matrix

Diese Abbildung ist nicht injektiv, da die Abbildung im zweiten Argument, also im Winkel , periodisch mit der Periode ist. Bei ist - unabhängig von - das Bild gleich . Ferner ist . Die Abbildung kann also nicht global invertierbar sein.

Die Determinante der Jacobi-Matrix ist

Bei liegt also nach Satz 14.13 ein bijektives totales Differential vor. Nach dem Satz über die lokale Umkehrabbildung gibt es zu jedem Punkt mit eine offene Umgebung und eine bijektive Abbildung

Bei kann man beispielsweise als offene Umgebung das offene Rechteck

mit und mit wählen. Das Bild davon, also , ist der Schnitt des (offenen) Kreisringes zu den Radien und und dem (offenen) Kreissektor, der durch die beiden Winkel und begrenzt ist.

Man kann diese Abbildung zu einer bijektiven Abbildung, und zwar zu einem Diffeomorphismus, auf großen offenen Mengen einschränken, beispielsweise zu

Die Bijektivität folgt dabei aus den grundlegenden Eigenschaften der trigonometrischen Funktionen, siehe insbesondere Satz 29.11. Wenn man das offene Intervall durch das halboffene Intervall ersetzt, so bekommt man eine Bijektion zwischen und . Man kann aber nicht von einem Diffeomorphismus sprechen, da dies nur für offene Mengen definiert ist. Die Umkehrabbildung ist übrigens noch nicht einmal stetig.




<< | Kurs:Mathematik (Osnabrück 2009-2011)/Teil II | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)