Kurs:Mathematik (Osnabrück 2009-2011)/Teil II/Vorlesung 49
- Der Banachsche Fixpunktsatz
Es sei ein nicht-leerer vollständiger metrischer Raum und
stark kontrahierende Abbildung.
Dann besitzt genau einen Fixpunkt.
Es sei , , ein Kontraktionsfaktor, d.h. es gelte
für alle . Wenn Fixpunkte sind, so folgt aus
sofort
und somit
,
es kann also maximal einen Fixpunkt geben.
Es sei nun
ein beliebiger Punkt. Wir betrachten die durch
rekursiv definierte Folge in . Wir setzen
Dann gilt für jedes die Beziehung
Daher gilt aufgrund der Dreiecksungleichung und der geometrischen Reihe für die Beziehung
Zu einem gegebenen wählt man mit
Dies zeigt, dass eine
Cauchy-Folge
vorliegt, die aufgrund der
Vollständigkeit
gegen ein
konvergiert.
Wir zeigen, dass dieses ein Fixpunkt ist. Die Bildfolge konvergiert gegen , da eine kontrahierende Abbildung stetig ist. Andererseits stimmt diese Bildfolge mit der Ausgangsfolge bis auf die Indizierung überein, sodass der Grenzwert sein muss.
- Der Satz über die Umkehrabbildung
Der Satz über die (lokale) Umkehrabbildung gehört zu den wichtigsten Sätzen der mehrdimensionalen Analysis. Er besagt, dass eine stetig differenzierbare Abbildung zwischen endlichdimensionalen Vektorräumen, für die das totale Differential in einem Punkt bijektiv ist (was voraussetzt, dass die Dimension des Definitionsraum mit der Dimension des Zielraums übereinstimmt), die Abbildung selbst auf geeigneten kleinen offenen Umgebungen von und von eine Bijektion ist. D.h. die Abbildung verhält sich lokal so wie das totale Differential.
Wir brauchen einige Vorbereitungen. Der Beweis des folgenden Lemmas ist schon eine gute Einstimmung für den Beweis des folgenden Hauptsatzes.
Es seien und endlichdimensionale reelle Vektorräume, und offene Teilmengen und sei
eine bijektive differenzierbare Abbildung. Sei . Das totale Differential
sei bijektiv und die Umkehrabbildung
sei stetig in .
Dann ist die Umkehrabbildung differenzierbar in und für ihre Ableitung gilt
Zuerst kann man durch Verschiebungen im Definitionsraum und im Zielraum annehmen, dass und ist. Es sei die durch das totale Differential gegebene bijektive lineare Abbildung mit der linearen Umkehrabbildung . Wir betrachten die Gesamtabbildung
Diese ist wieder differenzierbar, und das totale Differential davon ist
nach der
Kettenregel.
Wenn wir für diese zusammengesetzte Abbildung die Aussage zeigen können, so folgt die Aussage auch für , da eine lineare Abbildung differenzierbar ist. Wir können also annehmen, dass eine differenzierbare Abbildung mit
ist, deren totales Differential in die Identität ist.
Nach diesen Reduktionen bedeutet die Differenzierbarkeit von in , dass der
Limes
ist. Wir müssen entsprechend für die Umkehrabbildung die Beziehung
zeigen. Es genügt, dies für jede Folge nachzuweisen. Eine solche Folge kann man eindeutig als (mit ) schreiben und aufgrund der vorausgesetzten Stetigkeit von konvergiert auch die Folge gegen . Also ist
Wegen mit gibt es eine hinreichend kleine Umgebung von derart, dass
Daher lässt sich die obere Gleichungskette (für hinreichend groß) fortsetzen durch
und dies konvergiert gegen .
Im allgemeinen ist eine differenzierbare Abbildung nicht bijektiv. Man kann das Lemma aber häufig anwenden, indem man zu einer kleineren offenen Umgebung des Punktes übergeht und für diese die Bijektivität auf das Bild zeigt.
Im Beweis des folgenden Satzes geht auch die folgende Version des Mittelwertsatzes ein.
Es seien und euklidische Vektorräume, sei offen und enthalte mit je zwei Punkten die Verbindungsstrecke. Es sei
eine differenzierbare Abbildung und es gelte
für alle .
Dann gilt für die Abschätzung
Beweis
Da nach Voraussetzung ist, ist dies eine differenzierbare Kurve. Daher gibt es nach der Mittelwertabschätzung für Kurven ein mit
Der folgende Satz besagt, dass eine stetig differenzierbare Abbildung in einer geeigneten offenen Umgebung eines Punktes bijektiv ist, wenn die Ableitung in diesem Punkt bijektiv ist. D.h., dass sich die Abbildung lokal so verhält wie die lineare Approximation.
Es seien und endlichdimensionale reelle Vektorräume, sei offen und es sei
eine stetig differenzierbare Abbildung. Es sei ein Punkt derart, dass das totale Differential
bijektiv ist.
Dann gibt es eine offene Menge und eine offene Menge mit und mit derart, dass eine Bijektion
induziert, und dass die Umkehrabbildung
ebenfalls stetig differenzierbar ist.
Wir beginnen mit einigen Reduktionen. Zuerst kann man durch Verschiebungen im Definitionsraum und im Zielraum annehmen, dass und ist. Es sei die durch das totale Differential gegebene bijektive lineare Abbildung mit der linearen Umkehrabbildung . Wir betrachten die Gesamtabbildung
Diese ist wieder stetig differenzierbar, und das totale Differential davon ist
.
Wenn wir für diese zusammengesetzte Abbildung die Aussage zeigen können, so folgt die Aussage auch für , da eine lineare Abbildung stetig differenzierbar ist. Wir können also annehmen, dass
eine stetig differenzierbare Abbildung mit
ist, deren totales Differential in die Identität ist. Wir werden dennoch von
und
sprechen, um klar zu machen, ob sich etwas im Definitionsraum oder im Zielraum abspielt.
Sei
fixiert. Wir betrachten die Hilfsabbildung
Diese Hilfsabbildung erfüllt folgende Eigenschaft: Ein Punkt
ist genau dann ein
Fixpunkt
von , also ein Punkt mit
,
wenn
ist, d.h. wenn ein Urbild von unter ist. Die Abbildungen sind selbst stetig differenzierbar und es gilt
.
Wir möchten den
Banachschen Fixpunktsatz
auf anwenden, um dafür einen Fixpunkt zu gewinnen und diesen als Urbildpunkt von unter nachweisen zu können. Wir fixieren eine euklidische Norm. Wegen der Stetigkeit von und wegen
gibt es ein , , derart, dass für alle die Abschätzung
gilt. Für jedes gilt daher nach der Mittelwertabschätzung die Abschätzung
Für und gilt
Für jedes liegt also eine Abbildung
vor.
Wegen der oben formulierten Ableitungseigenschaft und aufgrund der
Mittelwertabschätzung
gilt für zwei Punkte
die Abschätzung
sodass eine
stark kontrahierende Abbildung
ist. Da ein euklidischer Vektorraum und damit auch die abgeschlossene Kugel
vollständig
sind
(siehe
Aufgabe 49.1
und
Aufgabe 49.12),
besitzt jede Abbildung aufgrund des
Banachschen Fixpunktsatzes
genau einen Fixpunkt aus , den wir mit bezeichnen. Aufgrund der eingangs gemachten Überlegung ist
.
Zu
gehört das eindeutige Urbild
zur offenen Kugel , wie die obige Abschätzung zeigt. Wir setzen
und ,
wobei aufgrund der Stetigkeit von offen ist. Die eingeschränkte Abbildung
ist wieder stetig und bijektiv. Insbesondere gibt es eine Umkehrabbildung
die wir als stetig differenzierbar nachweisen müssen.
Wir zeigen zuerst, dass
Lipschitz-stetig
ist mit der
Lipschitz-Konstanten
. Seien
gegeben mit den eindeutigen Elementen
mit
und .
Es gelten die Abschätzungen
wobei die letzte Abschätzung auf obiger Überlegung beruht. Durch Umstellung ergibt sich
Aufgrund von Lemma 49.2 ist auch differenzierbar und es gilt die Formel
Aus dieser Darstellung lässt sich auch die stetige Abhängigkeit der Ableitung von ablesen, da stetig ist, da das totale Differential von nach Voraussetzung stetig von
abhängt und da das Bilden der Umkehrmatrix ebenfalls stetig ist.
<< | Kurs:Mathematik (Osnabrück 2009-2011)/Teil II | >> |
---|