Kurs:Mathematik für Anwender/Teil I/38/Klausur mit Lösungen

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Punkte 3 3 1 3 1 2 4 7 2 4 1 4 4 6 4 4 6 5 64




Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Eine injektive Abbildung
  2. Der Betrag einer komplexen Zahl .
  3. Die Stetigkeit einer Funktion

    in einem Punkt .

  4. Die Ableitungsfunktion zu einer differenzierbaren Funktion .
  5. Die Matrizenmultiplikation.
  6. Eine invertierbare -Matrix über einem Körper .


Lösung

  1. Die Abbildung

    ist injektiv, wenn für je zwei verschiedene Elemente auch und verschieden sind.

  2. Der Betrag einer komplexen Zahl ist durch

    definiert.

  3. Man sagt, dass stetig im Punkt ist,wenn es zu jedem ein derart gibt, dass für alle mit die Abschätzung gilt.
  4. Die Ableitungsfunktion ist diejenige Funktion, die jedem Punkt die Ableitung zuordnet.
  5. Es sei ein Körper und es sei eine -Matrix und eine -Matrix über . Dann ist das Matrixprodukt

    diejenige -Matrix, deren Einträge durch

    gegeben sind.

  6. Die Matrix heißt invertierbar, wenn es eine Matrix mit

    gibt.


Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

  1. Die Division mit Rest im Polynomring über einem Körper .
  2. Die Ableitung des Sinus und des Kosinus.
  3. Der Satz über die Beschreibung einer linearen Abbildung bei einem Basiswechsel.


Lösung

  1. Es seien zwei Polynome mit . Dann gibt es eindeutig bestimmte Polynome mit
  2. Die Sinusfunktion

    ist differenzierbar mit

    und die Kosinusfunktion

    ist differenzierbar mit

  3. Es sei ein Körper und es seien und endlichdimensionale -Vektorräume. Es seien und Basen von und und Basen von . Es sei

    eine lineare Abbildung, die bezüglich der Basen und durch die Matrix beschrieben werde. Dann wird bezüglich der Basen und durch die Matrix

    beschrieben, wobei und die Übergangsmatrizen sind, die die Basiswechsel von nach und von nach

    beschreiben.


Aufgabe (1 Punkt)

In der Klasse ist es sehr laut. Frau Maier-Sengupta sagt „Bitte nicht gleichzeitig sprechen“. Bringe diese Aussage mit dem Konzept von disjunkten Mengen in Verbindung.


Lösung

Die Forderung von Frau Maier-Sengupta bedeutet, das die Sprechzeiten der Kinder paarweise disjunkt sein sollen.


Aufgabe (3 (1+2) Punkte)

  1. Finde eine ganzzahlige Lösung für die Gleichung
  2. Zeige, dass

    eine Lösung für die Gleichung

    ist.


Lösung

  1. ist eine ganzzahlige Lösung.
  2. Es ist


Aufgabe (1 Punkt)

Berechne die Gaußklammer von .


Lösung

Es ist

und

daher ist

also ist


Aufgabe (2 Punkte)

Bestimme für das Polynom

den Grad, den Leitkoeffizienten, den Leitterm und den Koeffizienten zu .


Lösung

Der Grad ist , der Leitkoeffizient ist , der Leitterm ist und der Koeffizient zu ist .


Aufgabe (4 Punkte)

Zeige, dass eine konvergente reelle Folge beschränkt ist.


Lösung

Es sei die konvergente Folge mit dem Limes und es sei ein gewählt. Aufgrund der Konvergenz gibt es ein derart, dass

Dann ist insbesondere

Unterhalb von gibt es nur endlich viele Zahlen, so dass das Maximum

wohldefiniert ist. Daher ist eine obere Schranke und eine untere Schranke für .


Aufgabe (7 Punkte)

Beweise das Folgenkriterium für die Stetigkeit einer Funktion in einem Punkt .


Lösung

Es bezeichne (1) die Stetigkeit von im Punkt und (2) die Eigenschaft, dass für jede gegen konvergente Folge die Bildfolge gegen konvergiert. Wir müssen die Äquivalenz von (1) und (2) zeigen.

Sei (1) erfüllt und sei eine Folge in , die gegen konvergiert. Wir müssen zeigen, dass

ist. Dazu sei vorgegeben. Wegen (1) gibt es ein mit der angegebenen Abschätzungseigenschaft und wegen der Konvergenz von gegen gibt es eine natürliche Zahl derart, dass für alle die Abschätzung

gilt. Nach der Wahl von ist dann

so dass die Bildfolge gegen konvergiert.
Sei (2) erfüllt.  Wir nehmen an, dass nicht stetig ist. Dann gibt es ein derart, dass es für alle Elemente gibt, deren Abstand zu maximal gleich ist, deren Wert unter der Abbildung aber zu einen Abstand besitzt, der größer als ist. Dies gilt dann insbesondere für die Stammbrüche , . D.h. für jede natürliche Zahl gibt es ein mit

Diese so konstruierte Folge konvergiert gegen , aber die Bildfolge konvergiert nicht gegen , da der Abstand der Bildfolgenglieder zu zumindest ist. Dies ist ein Widerspruch zu (2).


Aufgabe (2 Punkte)

Bestimme den Grenzwert


Lösung

Wir verwenden die Regel von Hospital. Die Ableitung der Zählerfunktion ist

mit dem Wert für und die Ableitung der Nennerfunktion ist

mit dem Wert für . Daher ist Hospital anwendbar und es ist


Aufgabe (4 Punkte)

Zeige, dass die reelle Exponentialfunktion

keine rationale Funktion ist.


Lösung

Nehmen wir an, es gelte

mit Polynomen , . Die Ableitung der Exponentialfunktion ist wieder die Exponentialfunktion. Es muss also

gelten. Damit ist auch

Es sei ( ist nicht möglich) und . Beim Ableiten reduziert sich der Grad eines Polynoms um . Der Grad rechts ist somit und links , es liegt also ein Widerspruch vor.


Aufgabe (1 Punkt)

Erstelle eine Kreisgleichung für den Kreis im mit Mittelpunkt , der durch den Punkt läuft.


Lösung

Der Abstand der beiden Punkte ist

Die Kreisgleichung ist somit


Aufgabe (4 Punkte)

Es sei

Wegen

ist diese Funktion auf dem offen Intervall streng fallend und damit injektiv (mit dem Bildintervall ). Dabei ist . Es sei

die Umkehrfunktion, die wir als eine Potenzreihe ansetzen. Bestimme aus der Bedingung

die Koeffizienten .


Lösung

Mit

und

wird die Bedingung

ausgeschrieben zu

Daraus können die sukzessive durch Koeffizientenvergleich bestimmt werden, da in der unendlichen Summe nur endlich viele Terme die Koeffizienten bestimmen. Zunächst ergibt sich

Aus (Koeffizient vor )

ergibt sich

Aus (Koeffizient vor )

ergibt sich

Aus (Koeffizient vor )

ergibt sich

Aus (Koeffizient vor )

ergibt sich


Aufgabe (4 Punkte)

Bestimme für die Funktion

die Extrema.


Lösung

Wir schreiben

Zur Bestimmung der Extrema betrachten wir die Ableitung, diese ist

Die Bedingung führt durch Multiplikation mit auf

Daher muss

sein, woraus sich

also

ergibt. Die zweite Ableitung ist

und somit positiv, also liegt im angegebenen Punkt ein isoliertes lokales Minimum vor.


Aufgabe (6 Punkte)

Sei

stetig mit

für jede stetige Funktion . Zeige .


Lösung

Nehmen wir an, dass nicht die Nullfunktion ist. Dann gibt es einen Punkt mit . Sagen wir . Da stetig ist, gibt es ein Teilintervall mit für alle . Die Funktion sei außerhalb von die Nullfunktion und auf durch

definiert. Die Funktion ist stetig auf und im Innern von positiv, also insgesamt nichtnegativ. Daher gibt es ein weiteres Teilintervall derart, dass für alle ist. Daher ist

im Widerspruch zur Voraussetzung.


Aufgabe (4 (2+2) Punkte)

Ein lineares Ungleichungssystem sei durch die Ungleichungen

gegeben.

a) Skizziere die Lösungsmenge dieses Ungleichungssystems.

b) Bestimme die Eckpunkte der Lösungsmenge.


Lösung

Lineares Ungleichungssystem.png

a) Wir lösen jeweils nach auf und erhalten die vier Ungleichungen

Die zugehörigen Geraden begrenzen dann die Lösungsmenge.

b) Die Eckpunkte sind Schnittpunkte der eingrenzenden Geraden, die durch die Gleichungen (die zu den Ungleichungen gehören) gegeben sind. Diese sind


Aufgabe (4 Punkte)

Sei der reelle Vektorraum der Polynome vom Grad mit der Basis

Erstelle für die Ableitungsabbildung

die beschreibende Matrix bezüglich dieser Basis.

Bestimme den Kern und das Bild dieser Abbildung sowie deren Dimensionen.


Lösung

Die Ableitung schickt die Basiselemente auf

Daraus sind direkt die Koeffizienten der Bildvektoren bezüglich der Basis abzulesen. In der beschreibenden Matrix stehen in den Spalten die Koeffizienten der Bildvektoren. Daher lautet die Matrix

Das Bild dieser Abbildung besteht aus allen Polynomen vom Grad . Dieser Untervektorraum besitzt die Basis und hat demnach die Dimension .

Der Kern besteht aus den konstanten Polynomen mit der Basis , dieser Unterraum ist also eindimensional.


Aufgabe (6 Punkte)

Es seien und Matrizen über einem Körper mit

Zeige, dass dann auch

gilt.


Lösung

Die Bedingung

bedeutet ausgeschrieben

Wegen der ersten und der vierten Gleichung sind und . Aus der zweiten Gleichung folgt nach Fakt *****, dass es ein gibt mit

und

Aus der ersten Gleichung ergibt sich

und somit

und

und

Aus der dritten Gleichung folgt, dass es ein gibt mit

und

Aus der vierten Gleichung ergibt sich

und somit

und

und

Somit ist


Aufgabe (5 Punkte)

Beweise den Satz über die Eigenvektoren zu verschiedenen Eigenwerten.


Lösung

Wir beweisen die Aussage durch Induktion nach . Für ist die Aussage richtig. Sei die Aussage also für weniger als Zahlen bewiesen. Betrachten wir eine Darstellung der , also

Wir wenden darauf an und erhalten einerseits

Andererseits multiplizieren wir die obige Gleichung mit und erhalten

Die so entstandenen Gleichungen zieht man voneinander ab und erhält

Aus der Induktionsvoraussetzung folgt, dass alle Koeffizienten , , sein müssen. Wegen folgt  für und wegen ist dann auch .