Hauptidealbereich/Z/Polynomring über Körper/Prim und irreduzibel/Einführung/Textabschnitt

Aus Wikiversity


Definition  

Ein Integritätsbereich, in dem jedes Ideal ein Hauptideal ist, heißt Hauptidealbereich.



Satz  

Der Ring der ganzen Zahlen

ist ein Hauptidealbereich.

Beweis  

Zunächst ist ein Integritätsbereich. Es sei ein Ideal. Damit ist insbesondere eine (additive) Untergruppe von und hat nach Fakt die Gestalt . Damit handelt es sich um ein Hauptideal.



Satz  

Ein Polynomring über einem Körper

ist ein Hauptidealbereich.

Beweis  

Es sei ein von verschiedenes Ideal in . Betrachte die nichtleere Menge

Diese Menge hat ein Minimum , das von einem Element , , herrührt, sagen wir . Wir behaupten, dass ist. Die Inklusion ist klar. Zum Beweis von sei gegeben. Aufgrund von Fakt gilt

Wegen und der Minimalität von kann der erste Fall nicht eintreten. Also ist und ist ein Vielfaches von .


In jedem Hauptidealbereich gibt es stes eine Zerlegung in irreduzible Elmente.


Lemma  

In einem Hauptidealbereich lässt sich jede Nichteinheit als ein Produkt von irreduziblen Elementen darstellen.

Beweis  

Angenommen, jede Zerlegung enthalte nicht irreduzible Elemente. Dann gibt es in jedem solchen Produkt einen Faktor, der ebenfalls keine Zerlegung in irreduzible Faktoren besitzt. Wir erhalten also eine unendliche Kette , wobei ein nicht-trivialer Teiler von ist. Somit haben wir eine echt aufsteigende Idealkette

Die Vereinigung dieser Ideale ist aber nach Aufgabe ebenfalls ein Ideal und nach Voraussetzung ein Hauptideal. Dies ist ein Widerspruch.


Über diese Aussage hinaus ist aber in einem Hauptidealbereich jedes irreduzible Element auch prim und damit gibt es auch stets eine Faktorzerlegung in Primelemente. Der Nachweis davon braucht einige Vorbereitungen, nämlich das Lemma von Bezout und das Lemma von Euklid.


Lemma  

Es sei ein Hauptidealbereich und seien teilerfremde Elemente.

Dann kann man die als Linearkombination von und darstellen, d.h. es gibt Elemente mit .

Beweis  

Wir betrachten das von und erzeugte Ideal . Da ein Hauptidealbereich ist, gibt es ein mit . Daher ist ein Teiler von und von . Die Teilerfremdheit impliziert, dass eine Einheit ist. Wegen gibt es eine Darstellung . Multiplikation mit ergibt die Darstellung der .



Lemma  

Es sei ein Hauptidealbereich und . Es seien und teilerfremd und teile das Produkt . Dann teilt den Faktor .

Beweis  

Da und teilerfremd sind, gibt es nach dem Lemma von Bezout Elemente mit . Die Voraussetzung, dass das Produkt teilt, schreiben wir als . Damit gilt

was zeigt, dass ein Vielfaches von ist.



Korollar  

Es sei ein Hauptidealbereich. Dann ist ein Element genau dann prim,

wenn es irreduzibel ist.

Beweis  

Ein Primelement in einem Integritätsbereich ist nach Fakt stets irreduzibel. Es sei also umgekehrt irreduzibel, und nehmen wir an, dass das Produkt teilt, sagen wir . Nehmen wir an, dass kein Vielfaches von ist. Dann sind aber und teilerfremd, da eine echte Inklusionskette der Irreduzibilität von widerspricht. Damit teilt nach dem Lemma von Euklid den anderen Faktor .