Kurs:Analysis/Teil I/32/Klausur mit Lösungen

Aus Wikiversity



Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Punkte 3 3 2 3 6 2 5 1 1 4 3 3 3 4 3 6 4 4 5 65




Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Eine injektive Abbildung
  2. Ein angeordneter Körper.
  3. Der Imaginärteil einer komplexen Zahl .
  4. Die Stetigkeit in einem Punkt einer Abbildung .
  5. Die Differenzierbarkeit in einem Punkt einer Abbildung .
  6. Das Oberintegral einer nach oben beschränkten Funktion

    auf einem beschränkten Intervall .


Lösung

  1. Die Abbildung

    ist injektiv, wenn für je zwei verschiedene Elemente auch und verschieden sind.

  2. Ein Körper heißt angeordnet, wenn es eine totale Ordnung“ auf gibt, die die beiden Eigenschaften
    1. Aus folgt (für beliebige )
    2. Aus und folgt (für beliebige )

    erfüllt.

  3. Zu einer komplexen Zahl nennt man den Imaginärteil von .
  4. Man sagt, dass stetig im Punkt ist, wenn es zu jedem ein derart gibt, dass für alle mit die Abschätzung gilt.
  5. Man sagt, dass differenzierbar in ist, wenn der Limes

    existiert.

  6. Das Oberintegral ist definiert als das Infimum von sämtlichen Treppenintegralen zu oberen Treppenfunktionen von .


Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

  1. Die allgemeine binomische Formel für .
  2. Die Regel von l'Hospital.
  3. Das Lösungsverfahren für Differentialgleichungen mit getrennten Variablen.


Lösung

  1. Für in einem Körper gilt
  2. Es sei ein offenes Intervall und ein Punkt. Es seien

    stetige Funktionen, die auf differenzierbar seien mit und mit für . Es sei vorausgesetzt, dass der Grenzwert

    existiert. Dann existiert auch der Grenzwert

    und sein Wert ist ebenfalls .
  3. Es sei

    eine Differentialgleichung mit getrennten Variablen mit stetigen Funktionen

    und

    wobei keine Nullstelle besitze. Es sei eine Stammfunktion von und eine Stammfunktion von . Weiter sei ein Teilintervall mit . Dann ist eine bijektive Funktion auf sein Bild und die Lösungen dieser Differentialgleichung haben die Form


Aufgabe (2 Punkte)

Ein Flugzeug soll von Osnabrück aus zu einem Zielort auf der Südhalbkugel fliegen. Kann es kürzer sein, in Richtung Norden zu fliegen?


Lösung Flugzeug/Osnabrück/Südhalbkugel/Aufgabe/Lösung


Aufgabe (3 Punkte)

Beweise durch Induktion, dass die Summe von aufeinanderfolgenden ungeraden Zahlen (beginnend bei ) stets eine Quadratzahl ist.


Lösung

Eine ungerade Zahl hat die Form , die Summe der ersten ungeraden Zahlen ist also gleich

Wir behaupten, dass dies gleich ist. Für ist die Aussage richtig, da die Summe gleich ist. Es sei die Aussage nun für ein schon bewiesen. Dann ist


Aufgabe (6 (1+1+1+2+1) Punkte)

Wir betrachten die durch die Wertetabelle

gegebene Abbildung von

in sich selbst.

  1. Erstelle eine Wertetabelle für .
  2. Erstelle eine Wertetabelle für .
  3. Begründe, dass sämtliche iterierten Hintereinanderschaltungen bijektiv sind.
  4. Bestimme für jedes das minimale mit der Eigenschaft, dass

    ist.

  5. Bestimme das minimale mit der Eigenschaft, dass

    für alle ist.


Lösung

  1. Es ist
  2. Es ist
  3. Aus der Wertetabelle kann man unmittelbar entnehmen, dass bijektiv ist. Nach Aufgabe 2.13,14 (Analysis (Osnabrück 2021-2023)) sind dann sämtliche Hintereinanderschaltungen der Abbildung mit sich selbst wieder bijektiv.
  4. Die Abbildungsvorschrift bewirkt

    und

    Für ist also und für ist .

  5. Bei sind nach Teil (4) die Zahlen wieder an ihrer Stelle, aber auch sind an ihrer Stelle, da ein Vielfaches von ist.


Aufgabe (2 Punkte)

Heinz Ngolo und Mustafa Müller wollen wissen, wie viele Kaulquappen sich im Teich im Wald befinden. Der Teich ist einen Meter tief und ist quadratisch mit einer Seitenlänge von zehn Metern, die Kaulquappen sind darin gleichmäßig verteilt. Heinz hat eine Teekanne dabei, in die ein halber Liter Wasser hineinpasst. Sie trinken den Tee leer und füllen die Kanne mit Teichwasser. Sie zählen, dass in der Kanne genau Kaulquappen sind und schütten alles zurück. Wie viele Kaulquappen befinden sich im Teich?


Lösung

Der Teich enthält Kubikmeter Wasser. In einen Kubikmeter passen Liter und somit der Inhalt von Teekannen. In den Teich passen also

Teekannen. Somit befinden sich im Teich ca.

Kaulquappen.


Aufgabe (5 Punkte)

Es sei ein Körper und ein beliebiges Element. Bestimme, welche Potenzen man (ausgehend von und bei optimaler Verwertung von Zwischenschritten) mit einer, zwei, drei oder vier Multiplikationen erhalten kann.


Lösung

Wir gehen rekursiv vor, da jede Potenz sich durch Multiplikation einer zuvor erhaltenen Potenz ergibt. Wenn dabei die Faktoren gleiche Potenzen verwenden, müssen diese nicht doppelt gezählt werden, da man ja die Ergebnisse von Zwischenmultiplikationen wiederverwenden kann.

Mit einer Multiplikation kann man offenbar nur erhalten.

Mit zwei Multiplikationen kann man

und

erhalten und sonst keine Potenz, da ja alle möglichen Multiplikationen notiert wurden.

Mit drei Multiplikationen kann man

erhalten. kann man nicht mit drei Multiplikationen erreichen, da in (dem einzigen ernsthaften Kandidat) schon vier Multiplikationen drin sind.

Mit vier Multiplikationen kann man

und

erhalten. Weitere Möglichkeiten gibt es nicht. Wenn nämlich nicht als Faktor vorkommt, so gibt es von den noch nicht abgedeckten Potenzen nur , doch dieser Aufbau braucht fünf Multiplikationen.


Aufgabe (1 Punkt)

Skizziere die Funktion


Lösung Gaußklammer/Minus innen und außen/Skizze/Aufgabe/Lösung


Aufgabe (1 Punkt)

Negiere die Aussage, dass eine Folge in einem angeordneten Körper gegen konvergiert, durch Umwandlung der Quantoren.


Lösung

Es gibt ein mit der Eigenschaft, dass es für alle ein

derart gibt, dass

ist.


Aufgabe (4 Punkte)

Es sei ein angeordneter Körper und es seien und drei Folgen in . Es gelte und und konvergieren beide gegen den gleichen Grenzwert . Zeige, dass dann auch gegen diesen Grenzwert konvergiert.


Lösung

Es ist

Bei ist somit

und bei ist

Daher ist stets

Für ein vorgegebenes gibt es aufgrund der Konvergenz der beiden äußeren Folgen gegen natürliche Zahlen  und derart, dass

für und

für gilt. Für gilt daher

Dies bedeutet die Konvergenz von gegen .


Aufgabe (3 Punkte)

Zeige, dass

eine Nullstelle des Polynoms

ist.


Lösung

Es ist


Aufgabe (3 Punkte)

Zeige, dass die harmonische Reihe divergiert.


Lösung

Für die Zahlen ist

Daher ist

Damit ist die Folge der Partialsummen unbeschränkt und kann nach Satz . (Analysis (Osnabrück 2021-2023)) nicht konvergent sein.


Aufgabe (3 Punkte)

Man erläutere den Unterschied zwischen dem Produkt und der Hintereinanderschaltung von zwei Funktionen

anhand typischer Beispiele. Wir ordnet sich die Kettenregel in diesen Fragekomplex ein?


Lösung Funktionen/Produkt und Einsetzung/Erläuterung/Aufgabe/Lösung


Aufgabe (4 Punkte)

Beweise den Satz von Rolle.


Lösung

Wenn konstant ist, so ist die Aussage richtig. Es sei also nicht konstant. Dann gibt es ein mit . Sagen wir, dass größer als dieser Wert ist. Aufgrund von Satz 13.10 (Analysis (Osnabrück 2021-2023)) gibt es ein , wo die Funktion ihr Maximum annimmt, und dieser Punkt kann kein Randpunkt sein. Für dieses ist dann nach Satz 19.1 (Analysis (Osnabrück 2021-2023)).


Aufgabe (3 Punkte)

Zeige mit Hilfe der Jensensschen Ungleichung, angewendet auf die konkave Logarithmusfunktion, die allgemeine Abschätzung zwischen dem arithmetischen und dem geometrischen Mittel, also die Aussage, dass für die Abschätzung

gilt.


Lösung

Da der natürliche Logarithmus konkav ist, gilt mit der konkaven Version der Jensenschen Ungleichung und mit den Koeffizienten

die Beziehung

Wir wenden darauf die Exponentialfunktion und dann zweimal die Funktionalgleichung der Exponentialfunktion an und erhalten


Aufgabe (6 (2+2+2) Punkte)

  1. Zeige, dass man mit Hilfe von Beispiel 22.5 (Analysis (Osnabrück 2021-2023)) und drei Summanden (also ) auf dem Intervall eine polynomiale Abschätzung für den Kosinus mit einem Fehler enthält.
  2. Zeige mit der Abschätzung aus (1), dass

    gilt.

  3. Kann man mit der Abschätzung aus (1) auch zeigem, dass

    ist?


Lösung

  1. Es ist
    Also ist mit Beispiel 22.5 (Analysis (Osnabrück 2021-2023))

    Das vierte Taylor-Polynom

    liefert also eine Approximation wie gesucht.

  2. Es ist

    Das ist positiv und deutlich , deshalb ist mit dem ersten Teil auch

    und damit ist

  3. Es ist

    Dies ist negativ, aber , mit der Abschätzung aus Teil (1) kann man also nicht zeigen, dass negativ ist und damit auch nicht, dass

    ist.


Aufgabe (4 Punkte)

Der Graph der Funktion

und die -Achse begrenzen eine Fläche. Bestimme die Gerade durch den Nullpunkt, die diese Fläche in zwei gleich große Teile unterteilt.


Lösung

Es ist

die Fläche befindet sich also oberhalb des Intervalls . Eine Stammfunktion von ist

und somit ist

Die Gerade durch den Nullpunkt setzen wir als an. Der Durchstoßungspunkt (abgesehen vom Nullpunkt) mit dem Graphen ergibt sich aus

zu

Die obere Fläche besitzt den Flächeninhalt

Die Bedingung

führt auf

und damit auf

Also ist


Aufgabe (4 Punkte)

Bestimme den Flächeninhalt zwischen den Graphen der Exponentialfunktion und der Kosinusfunktion auf dem Intervall . Skizziere die Situation.


Lösung

Der Kosinus verläuft im angegebenen Bereich unterhalb der Exponentialfunktion, deshalb ist der Flächeninhalt die Differenz der Flächeninhalte der beiden Funktionen in dem Bereich. Es ist

und

und damit ist der Flächeninhalt gleich .


Aufgabe (5 Punkte)

Finde die Lösung des Anfangwertproblems

mit


Lösung

Wir schreiben

es liegt also eine Differentialgleichung mit getrennten Variablen vor, wir verwenden Satz 30.2 (Analysis (Osnabrück 2021-2023)). Eine Stammfunktion zu

ist . Die Umkehrfunktion ist . Die Stammfunktionen zu

sind . Daher sind die Lösungen der Differentialgleichung von der Form

mit einer Konstanten , und wobei die Lösungen bei auf und sonst auf definiert sind. Die Anfangsbedingung bedeutet

also ist

Die Lösung des Anfangswertproblems ist also auf .