Zum Inhalt springen

Kurs:Analysis (Osnabrück 2013-2015)/Teil II/Vorlesung 41/kontrolle

Aus Wikiversity



Differentialgleichungen höherer Ordnung

Es sei ein offenes Intervall, offen und

eine Funktion. Dann nennt man den Ausdruck

eine Differentialgleichung der Ordnung .

Unter einer Lösung einer Differentialgleichung höherer Ordnung versteht man eine -mal differenzierbare Funktion

(wobei ein offenes Teilintervall ist) derart, dass

für alle gilt.

Differentialgleichungen beliebiger Ordnung können unter Inkaufnahme von neuen Variablen auf ein Differentialgleichungssystem erster Ordnung zurückgeführt werden.



Lemma  Lemma 41.2 ändern

Es sei ein Intervall, eine offene Menge und

eine Funktion.

Dann ist die Differentialgleichung höherer Ordnung

über die Beziehung

äquivalent zum Differentialgleichungssystem

Wenn

eine Lösung der Differentialgleichung höherer Ordnung

ist, so sind alle Funktionen für differenzierbar, und es gilt für nach Definition und schließlich


Wenn umgekehrt

eine Lösung des Differentialgleichungssystems zum Vektorfeld

ist, so ergibt sich sukzessive aus den ersten Gleichungen, dass -mal differenzierbar ist, und die letzte Gleichung des Differentialgleichungssystems besagt gerade



Mit dieser Umformung ist auch klar, wie sinnvolle Anfangsbedingungen für eine Differentialgleichung höherer Ordnung aussehen. Man muss nicht nur einen Startwert , sondern auch die höheren Ableitungen , , usw. festlegen.

Es ist im Allgemeinen schwierig, eine Differentialgleichung explizit zu lösen. Wir besprechen daher ein approximierendes Verfahren, nämlich das eulersche Polygonzugverfahren.



Polygonzugverfahren

Mit dem (eulerschen) Polygonzugverfahren wird die Lösungskurve einer Differentialgleichung diskret approximiert.


Es sei ein Vektorfeld

auf einer offenen Menge und eine Anfangsbedingung gegeben. Das eulersche Polygonzugverfahren funktioniert folgendermaßen: Man wählt eine Schrittweite und berechnet rekursiv die Punktfolge , , durch und

Zu einem schon konstruierten Punkt wird also das -fache des Richtungsvektors zum Zeitpunkt an diesem Punkt hinzuaddiert. Dies funktioniert nur, solange die Punkte im Definitionsbereich des Vektorfeldes liegen. Der zu dieser Punktfolge gehörende Streckenzug oder Polygonzug

ist die lineare Interpolation mit , d.h. für mit ist

Dieser Streckenzug stellt eine stückweise lineare Approximation der Lösungskurve des Anfangswertproblems dar. Für eine kleinere Schrittweite wird die Approximation im Allgemeinen besser.


Bei einer eindimensionalen ortsunabhängigen Differentialgleichung

ergibt sich einfach als eine Stammfunktion zu . Wendet man in dieser Situation Verfahren 41.3 zum Startzeitpunkt , zum Startpunkt und zur Schrittweite an, so ergibt sich die rekursive Beziehung

Daher ist offenbar

D.h. dass man zu dem Ausgangswert das Treppenintegral zur äquidistanten Unterteilung (und zur durch auf dem Teilintervall gegebenen Treppenfunktion) hinzuaddiert. Der zugehörige Streckenzug ist die (stückweise lineare) Integralfunktion zu dieser Treppenfunktion.



Beispiel  Beispiel 41.5 ändern

Wir wollen für das Differentialgleichungssystem

mit der Anfangsbedingung

gemäß Verfahren 41.3 einen approximierenden Streckenzug berechnen. Wir wählen die Schrittweite . Somit ist

und




Lineare Differentialgleichungssysteme

Definition  Definition 41.6 ändern

Es sei ein offenes reelles Intervall. Eine Differentialgleichung der Form

wobei

eine Matrix ist, deren Einträge allesamt Funktionen

sind, heißt homogene lineare gewöhnliche Differentialgleichung oder homogenes lineares gewöhnliches Differentialgleichungssystem.

Es handelt sich also um die Differentialgleichung zum Vektorfeld

Dieses Vektorfeld ist zu jedem fixierten Zeitpunkt eine lineare Abbildung

Ausgeschrieben liegt das Differentialgleichungssystem

vor. Es gibt immer die Nulllösung, also die konstante Abbildung mit dem Nullvektor als Wert, diese nennt man auch die triviale Lösung.

Für lineare Differentialgleichungssysteme gibt es wieder eine inhomogene Variante.


Es sei ein offenes reelles Intervall. Eine Differentialgleichung der Form

wobei

eine Matrix ist, deren Einträge allesamt Funktionen

sind und wobei

eine Abbildung ist, heißt inhomogene lineare gewöhnliche Differentialgleichung oder inhomogenes lineares gewöhnliches Differentialgleichungssystem. Die Abbildung heißt dabei Störabbildung.

Insgesamt liegt das Differentialgleichungssystem

vor.

Die explizite Lösbarkeit eines solchen Systems hängt natürlich von der Kompliziertheit der beteiligten Funktionen und ab. In der folgenden Situation kann man das System auf einzelne eindimensionale lineare inhomogene Differentialgleichungen zurückführen und dadurch sukzessive lösen.


Es sei ein offenes Intervall und es liege eine inhomogene lineare gewöhnliche Differentialgleichung der Form

mit stetigen Funktionen und und den Anfangsbedingungen

vor.

Dann lässt sich diese Gleichung lösen, indem man sukzessive unter Verwendung der zuvor gefundenen Lösungen die inhomogenen linearen gewöhnlichen Differentialgleichungen in einer Variablen, nämlich

löst.

Beweis

Das ist trivial.


Die Lösungen eines solchen linearen Differentialgleichungssystems in oberer Dreiecksgestalt stehen also in Bijektion zu den Lösungen der linearen inhomogenen Differentialgleichungen in einer Ortsvariablen, wobei die Störfunktionen jeweils mit den anderen Lösungen in der beschriebenen Weise zusammenhängen. Insbesondere übertragen sich Existenz- und Eindeutigkeitsaussagen.

Auch wenn man ein homogenes System lösen möchte, so muss man in den Einzelschritten inhomogene Differentialgleichungen lösen.


Wir betrachten das homogene lineare Differentialgleichungssystem

für . Die zweite Zeile dieses Systems bedeutet

das ist eine homogene lineare Differentialgleichung in einer Variablen. Ihre Lösungen sind gemäß Satz 29.2 gleich

mit einem . Die erste Zeile des Systems führt daher auf

Dies ist eine inhomogene lineare Differentialgleichung in einer Variablen. Die zugehörige homogene Gleichung besitzt als eine Lösung. Nach Satz 29.10 müssen wir eine Stammfunktion von

finden, eine solche ist

Daher ist

die allgemeine Lösung der inhomogenen Gleichung. Also ist die allgemeine Lösung des Systems gleich