Kurs:Lineare Algebra/Teil I/5/Klausur/kontrolle
Aufgabe | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Punkte | 3 | 3 | 3 | 2 | 12 | 3 | 3 | 5 | 5 | 6 | 5 | 4 | 6 | 3 | 1 | 64 |
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (3 Punkte)Referenznummer erstellen
In einem Hörsaal befindet sich ein Tafelgestell mit drei hintereinander liegenden, vertikal verschiebbaren Tafeln. Diese seien mit (vordere Tafel), (mittlere Tafel) und (hintere Tafel) bezeichnet. Aufgrund der Höhe des Gestells sind nur (maximal) zwei Tafeln gleichzeitig einsehbar. Die Lehrperson schreibt in der Vorlesung jede Tafel genau einmal voll. In welcher Reihenfolge (alle Möglichkeiten!) muss sie die Tafeln einsetzen, wenn beim Beschreiben einer Tafel stets die zuletzt beschriebene Tafel sichtbar sein soll.
Aufgabe * (2 Punkte)Referenznummer erstellen
Es seien Mengen und
Abbildungen mit der Hintereinanderschaltung
Zeige: Wenn injektiv ist, so ist auch injektiv.
Aufgabe * (12 Punkte)Referenznummer erstellen
Beweise den Charakterisierungssatz für eine Basis in einem - Vektorraum .
Aufgabe * (3 Punkte)Referenznummer erstellen
Bestimme die inverse Matrix zu
Aufgabe * (3 Punkte)Referenznummer erstellen
Drücke die Vektoren der Dualbasis zur Basis im als Linearkombinationen bezüglich der Standarddualbasis aus.
Aufgabe * (5 Punkte)Referenznummer erstellen
Zeige, dass im Polynomring über einem Körper jedes Ideal ein Hauptideal ist.
Aufgabe * (5 Punkte)Referenznummer erstellen
Es sei eine Körpererweiterung. Es sei eine - Matrix über gegeben. Zeige, dass das Minimalpolynom mit dem Minimalpolynom zu übereinstimmt, wenn man die Matrix über auffasst.
Aufgabe * (6 (3+3) Punkte)Referenznummer erstellen
a) Es sei eine - Matrix, die trigonalisierbar, aber weder diagonalisierbar noch invertierbar ist. Zeige, dass nilpotent ist.
b) Man gebe ein Beispiel einer
-
Matrix
, die trigonalisierbar, aber weder diagonalisierbar noch invertierbar, noch nilpotent ist.
Aufgabe * (5 (3+2) Punkte)Referenznummer erstellen
Es sei ein
Körper.
a) Charakterisiere die nilpotenten - Matrizen
über mit Hilfe von zwei Gleichungen in den Variablen .
b) Sind die Gleichungen linear?
Aufgabe * (4 Punkte)Referenznummer erstellen
Beweise den Satz über die Beziehung zwischen geometrischer und algebraischer Vielfachheit.
Aufgabe * (6 (2+2+2) Punkte)Referenznummer erstellen
Wir betrachten die Matrix
über .
a) Bestimme die jordansche Normalform von .
b) Bestimme die kanonische Zerlegung von in einen diagonalisierbaren Anteil und einen nilpotenten Anteil.
c) Welche Eigenschaften der kanonischen Zerlegung erfüllt die Zerlegung
welche nicht?
Aufgabe * (3 Punkte)Referenznummer erstellen
Eine lineare Abbildung
werde bezüglich der Standardbasis durch die Matrix
beschrieben. Finde eine Basis, bezüglich der durch die Matrix
beschrieben wird.
Aufgabe * (1 Punkt)Referenznummer erstellen
Es sei ein - Vektorraum, den wir auch als affinen Raum über sich selbst auffassen. Es seien . Zeige, dass die Familie dieser Vektoren genau dann eine Basis von bildet, wenn die Familie eine affine Basis bildet.