Zum Inhalt springen

Kurs:Lineare Algebra/Teil I/53/Klausur mit Lösungen

Aus Wikiversity



Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Punkte 3 3 3 1 3 3 2 4 4 4 0 0 3 2 5 0 0 3 8 51




Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Der Durchschnitt von Mengen und .
  2. Ein Vektorraum über einem Körper .
  3. Elementare Zeilenumformungen an einer - Matrix über einem Körper .
  4. Die Spur zu einer linearen Abbildung auf einem endlichdimensionalen - Vektorraum .
  5. Ein Eigenvektor zu einer linearen Abbildung

    auf einem - Vektorraum .

  6. Eine Matrix in jordanscher Normalform.


Lösung

  1. Die Menge

    heißt der Durchschnitt der beiden Mengen.

  2. Unter einem Vektorraum über versteht man eine Menge mit einem ausgezeichneten Element und mit zwei Abbildungen

    und

    derart, dass die folgenden Axiome erfüllt sind (dabei seien und beliebig):

    1. ,
    2. ,
    3. ,
    4. Zu jedem gibt es ein mit ,
    5. ,
    6. ,
    7. ,
    8. .
  3. Unter den elementaren Zeilenumformungen versteht man die Manipulationen:
    1. Vertauschung von zwei Zeilen.
    2. Multiplikation einer Zeile mit .
    3. Addition des -fachen einer Zeile zu einer anderen Zeile.
  4. Die lineare Abbildung werde bezüglich einer Basis durch die Matrix beschrieben. Dann nennt man die Spur von .
  5. Ein Element , , heißt ein Eigenvektor von , wenn

    mit einem gewissen gilt.

  6. Eine quadratische Matrix der Form

    wobei die Jordanmatrizen sind, heißt Matrix in jordanscher Normalform.


Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

  1. Der Satz über die mathematische Struktur der Lösungsmenge eines homogenen linearen Gleichungssystems.
  2. Der Satz über das Signum und Transpositionen.
  3. Der Satz über die Interpolation durch Polynome.


Lösung

  1. Die Menge aller Lösungen eines homogenen linearen Gleichungssystems

    über einem Körper ist ein Untervektorraum des

    (mit komponentenweiser Addition und Skalarmultiplikation).
  2. Es sei und sei eine Permutation auf . Es sei

    als ein Produkt von Transpositionen geschrieben. Dann gilt für das Signum die Darstellung

  3. Es sei ein Körper und es seien verschiedene Elemente und Elemente gegeben. Dann gibt es ein Polynom vom Grad derart, dass für alle ist.


Aufgabe (3 Punkte)

Erläutere das Konzept der Wohldefiniertheit anhand eines typischen Beispiels.


Lösung Wohldefiniertheit/Typisches Beispiel/Aufgabe/Lösung


Aufgabe (1 Punkt)

Professor Knopfloch ist soeben aufgestanden und noch etwas schläfrig. Er setzt sich seine zwei Kontaklinsen in seine Augen. Beim Frühstück stellt er fest, dass in seinem linken Auge keine Kontaktlinse ist. Er ist sich sicher, dass keine Kontaktlinse verloren ging, jede Kontaklinse landete in einem seiner Augen. Ist die Abbildung, die die Zuordnung an diesem Morgen der Kontaktlinsen zu den Augen beschreibt, surjektiv, injektiv, bijektiv?


Lösung

Die einzige Möglichkeit ist, dass beide Kontaklinsen im rechten Auge gelandet sind. Somit ist die Abbildung nicht injektiv ( Elemente haben den gleichen Wert), und auch nicht surjektiv, da das linke Auge nicht getroffen wird. Insbesondere ist die Abbildung nicht bijektiv.


Aufgabe (3 Punkte)

Wie viele Teilquadrate mit positiver Seitenlänge gibt es in einem Quadrat der Seitenlänge ? Die Seiten der Teilquadrate sollen wie im Bild auf dem „Gitter“ liegen, ein einzelner Punkt gelte nicht als Quadrat.


Lösung

Die möglichen Seitenlängen sind . Ein Unterquadrat ist durch die Lage des Eckes links oben eindeutig bestimmt, man muss bei fixierter Seitenlänge nur berücksichtigen, dass das Teilquadrat ganz im Grundquadrat liegt. Somit gibt es für die Seitenlänge eine Möglichkeit, für die Seitenlänge vier Möglichkeiten, für die Seitenlänge neun Möglichkeiten, für die Seitenlänge Möglichkeiten und für die Seitenlänge Möglickeiten, Insgesamt gibt es also

Unterquadrate.


Aufgabe (3 Punkte)

Eine Firma besitzt Maschinen vom Typ und Maschinen vom Typ , eine andere Firma besitzt Maschinen vom Typ und vom Typ . und stellen unabhängig voneinander das gleiche Produkt her. Firma X braucht zur Herstellung von Produkten Tage, Firma braucht für die selbe Anzahl von Produkten Tage. Welche Maschine ist produktiver?


Lösung

Es sei die Produktivität der Maschine und die Produktivität der Maschine . Es ergibt sich die Gleichheit

also

bzw.

bzw.

Die Maschine ist also produktiver als .


Aufgabe (2 Punkte)

Löse die lineare Gleichung

über und berechne den Betrag der Lösung.


Lösung

Es ist

Der Betrag ist


Aufgabe (4 Punkte)

Löse das inhomogene Gleichungssystem


Lösung

Wir eliminieren zuerst die Variable , indem wir die erste Gleichung mit der zweiten addieren. Dies führt auf

Nun addieren wir die erste Gleichung mit der zweiten Gleichung und es ergibt sich

und

Rückwärts gelesen ergibt sich

und


Aufgabe (4 (1+1+2) Punkte)

Die Zeitungen und verkaufen Zeitungsabos und konkurrieren dabei um einen lokalen Markt mit potentiellen Lesern. Dabei sind innerhalb eines Jahres folgende Kundenbewegungen zu beobachten.

  1. Die Abonnenten von bleiben zu bei , wechseln zu , wechseln zu und werden Nichtleser.
  2. Die Abonnenten von bleiben zu bei , wechseln zu , wechseln zu und werden Nichtleser.
  3. Die Abonnenten von bleiben zu bei , niemand wechselt zu , wechseln zu und werden Nichtleser.
  4. Von den Nichtlesern entscheiden sich je für ein Abonnement von oder , die übrigen bleiben Nichtleser.


a) Erstelle die Matrix, die die Kundenbewegungen innerhalb eines Jahres beschreibt.


b) In einem bestimmten Jahr haben alle drei Zeitungen je Abonnenten und es gibt Nichtleser. Wie sieht die Verteilung ein Jahr später aus?


c) Die drei Zeitungen expandieren in eine zweite Stadt, wo es bislang überhaupt keine Zeitungen gibt, aber ebenfalls potentielle Leser. Wie viele Leser haben dort die einzelnen Zeitungen (und wie viele Nichtleser gibt es noch) nach drei Jahren, wenn dort die gleichen Kundenbewegungen zu beobachten sind?


Lösung


a) Die Matrix, die die Kundenbewegungen (in der Reihenfolge und Nichtleser) beschreibt, ist


b) Die Kundenverteilung nach einem Jahr zur Ausgangsverteilung ist


c) Die Ausgangsverteilung ist , daher ist die Verteilung nach einem Jahr gleich .

Nach zwei Jahren ist die Kundenverteilung

Nach drei Jahren ist die Kundenverteilung


Aufgabe (4 Punkte)

Beweise das Injektivitätskriterium für eine lineare Abbildung.


Lösung

Wenn die Abbildung injektiv ist, so kann es neben keinen weiteren Vektor mit geben. Also ist .
Es sei umgekehrt und seien gegeben mit . Dann ist wegen der Linearität

Daher ist und damit .


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (3 Punkte)

Finde ganze Zahlen derart, dass die Determinante der Matrix

gleich ist.


Lösung

Eine solche Matrix ist


Aufgabe (2 Punkte)

Es stehen zwei Eimer ohne Markierungen zur Verfügung, ferner eine Wasserquelle. Der eine Eimer hat ein Fassungsvermögen von und der andere ein Fassungsvermögen von Litern. Zeige, dass man allein durch Auffüllungen, Ausleerungen und Umschüttungen erreichen kann, dass in einem Eimer genau ein Liter Wasser enthalten ist.


Lösung

Die folgende Kette von Inhaltspaaren kann man bei den gegebenen Möglichkeiten offensichtlich erreichen.


Aufgabe (5 Punkte)

Zeige, dass im Polynomring über einem Körper jedes Ideal ein Hauptideal ist.


Lösung

Es sei ein von verschiedenes Ideal in . Betrachte die nichtleere Menge

Diese Menge hat ein Minimum , das von einem Element , , herrührt, sagen wir . Wir behaupten, dass ist. Die Inklusion ist klar. Zum Beweis von sei gegeben. Aufgrund von Satz 19.4 (Lineare Algebra (Osnabrück 2024-2025)) gilt

Wegen und der Minimalität von kann der erste Fall nicht eintreten. Also ist und ist ein Vielfaches von .


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (3 Punkte)

Bestimme die Ordnung der Matrix

über dem Körper mit Elementen.


Lösung

Es ist

und

und

also ist die Ordnung gleich .


Aufgabe (8 Punkte)

Es sei ein affiner Raum über einem - Vektorraum und es sei

eine endliche Familie von Punkten aus . Zeige, dass die folgenden Aussagen äquivalent sind.

  1. Die Punkte sind affin unabhängig.
  2. Für jedes ist die Vektorfamilie

    linear unabhängig.

  3. Es gibt ein derart, dass die Vektorfamilie

    linear unabhängig ist.

  4. Die Punkte bilden in dem von ihnen erzeugten affinen Unterraum eine affine Basis.


Lösung

Von (1) nach (2). Es sei fixiert. Nehmen wir an, dass die Vektoren , linear abhängig sind. Dann gibt es ein

derart, dass sich als Linearkombination der anderen Vektoren darstellen lässt. Es gilt also

Dann ist

mit

Somit liegen zwei verschiedene baryzentrische Kombinationen des gleichen Punktes vor im Widerspruch zur affinen Unabhängigkeit.

Von (2) nach (3) ist eine Abschwächung (wenn die Punktmenge leer ist, so sind alle vier Bedingungen wahr).

Von (3) nach (4). Die Familie

ist linear unabhängig, daher eine Basis des davon erzeugten Untervektorraums. Daher ist nach Definition eine affine Basis des von (Ihnen erzeugten Unterraums.

Von (4) nach (1). Seien

zwei baryzentrische Kombinationen, also

und damit

Weil eine affine Basis des von Ihnen erzeugten Raumes bilden, ist die Familie , linear unabhängig in und daher gilt .