Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Vorlesung 28

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Die Fakultätsfunktion

Die Fakultät einer natürlichen Zahl ist . Dabei gilt die rekursive Beziehung . Gibt es eine Möglichkeit, diese für die natürlichen Zahlen definierte Funktion auf durch eine differenzierbare Funktion fortzusetzen? Ist es sogar möglich, dass dabei die Beziehung für jedes gilt? Wir werden mit Hilfe von uneigentlichen Integralen zeigen, dass dies in der Tat möglich ist.


Beispiel  

Sei . Wir betrachten die Funktion

Wir behaupten, dass das uneigentliche Integral

existiert. Für den rechten Rand (also ) betrachten wir eine natürliche Zahl . Da die Exponentialfunktion schneller wächst als jede Polynomfunktion (siehe Aufgabe *****), gibt es ein derart, dass gilt für alle . Daher ist

Für wächst das linke Integral und ist durch beschränkt, so dass der Grenzwert existiert. Für das Verhalten am linken Rand (das nur bei problematisch ist) müssen wir wegen nach Lemma 27.4 nur betrachten. Eine Stammfunktion davon ist , deren Exponent positiv ist, so dass der Limes für existiert.


Das uneigentliche Integral

existiert also für . Dies ist der Ausgangspunkt für die Definition der Fakultätsfunktion.


Definition  

Für , , heißt die Funktion

die Fakultätsfunktion.

Die für durch

definierte Funktion heißt Gammafunktion, mit der häufiger gearbeitet wird. Mit der Fakultätsfunktion werden aber die Formeln etwas schöner und insbesondere wird der Zusammenhang zur Fakultät, der in der folgenden Aussage aufgezeigt wird, deutlicher.

Factorial plot.png




Satz  

Die Fakultätsfunktion besitzt die folgenden Eigenschaften.

  1. Es ist für .
  2. Es ist .
  3. Es ist für natürliche Zahlen .
  4. Es ist .

Beweis  

(1) Mittels partieller Integration ergibt sich (für reelle Zahlen bei fixiertem )

Für geht und für geht (da positiv ist). Wendet man auf beide Seiten diese Grenzwertprozesse an, so erhält man .
(2). Es ist


(3) folgt aus (1) und (2) durch Induktion.
(4). Es ist

Dies ergibt sich mit der Substitution und dem sogenannten Fehlerintegral.



Gewöhnliche Differentialgleichungen
Taraxacum sect Ruderalia13 ies.jpg

Welche Bewegung vollzieht ein Löwenzahnfallschirmchen? Das Fallschirmchen lässt sich zu jedem Zeitpunkt von dem Wind tragen, der an der Stelle herrscht, wo es sich gerade befindet. Der Wind, seine Stärke und seine Richtung, hängt sowohl von der Zeit als auch vom Ort ab. Das bedeutet, dass hier ein gewisser „Rückkopplungsprozess“ vorliegt: Die bisherige Bewegung (also die Vergangenheit) bestimmt, wo sich das Fallschirmchen befindet und damit auch, welcher Wind auf es einwirkt und damit den weiteren Bewegungsablauf. Solche Bewegungsprozesse werden durch Differentialgleichungen beschrieben.

Differentialgleichungen sind ein fundamentaler Bestandteil der Mathematik und der Naturwissenschaften. Sie drücken eine Beziehung zwischen einer abhängigen Größe (häufig ) und der Änderung dieser Größe () aus. Viele Gesetzmäßigkeiten in der Natur wie Bewegungsprozesse, Ablauf von chemischen Reaktionen, Wachstumsverhalten von Populationen werden durch Differentialgleichungen beschrieben. Hier besprechen wir nur solche Differentialgleichungen, die durch Integration gelöst werden können.



Definition  

Es sei eine Teilmenge und es sei

eine Funktion. Dann nennt man

die (gewöhnliche) Differentialgleichung zu (oder zum Vektorfeld oder zum Richtungsfeld ).

Dabei ist erstmal nur ein formaler Ausdruck, dem wir aber sofort eine inhaltliche Interpretation geben. Das soll eine Funktion in einer Variablen repräsentieren und ihre Ableitung. Dies wird präzisiert durch den Begriff der Lösung einer Differentialgleichung.


Definition  

Es sei eine Teilmenge und es sei

eine Funktion. Zur gewöhnlichen Differentialgleichung

heißt eine Funktion

auf einem (mehrpunktigen) Intervall eine Lösung der Differentialgleichung, wenn folgende Eigenschaften erfüllt sind.

  1. Es ist für alle .
  2. Die Funktion ist differenzierbar.
  3. Es ist für alle .

Statt Lösung sagt man auch Lösungsfunktion oder Lösungskurve.

Differentialgleichungen beschreiben häufig physikalische Prozesse, insbesondere Bewegungsprozesse. Daran soll auch die Notation erinnern, es steht für die Zeit und für den Ort. Dabei ist hier der Ort eindimensional, d.h. die Bewegung findet nur auf einer Geraden statt. Den Wert sollte man sich als eine zu einem Zeit- und Ortspunkt vorgegebene Richtung auf der Ortsgeraden vorstellen. Eine Lösung ist dann eine Funktion

die differenzierbar ist und deren Ableitung, vorgestellt als Momentangeschwindigkeit, zu jedem Zeitpunkt mit dem durch gegebenen Richtungsvektor übereinstimmt. Später werden wir auch Bewegungen betrachten, die sich in der Ebene oder im Raum abspielen, und die durch ein entsprechendes Richtungsfeld gesteuert werden.


Beispiel  

Wir betrachten die gewöhnliche Differentialgleichung , in der gar nicht explizit vorkommt (solche Differentialgleichungen nennt man zeitunabhängig). Durch diese Differentialgleichung werden Wachstumsprozesse beschrieben, bei denen beispielsweise der Zuwachs gleich der Bevölkerung ist. Gesucht ist also nach einer Funktion , die differenzierbar ist und die mit ihrer eigenen Ableitung übereinstimmt. Wir wissen bereits, dass die Exponentialfunktion diese Eigenschaft besitzt. Ebenso ist jede Funktion mit einem festen eine Lösungsfunktion.

Wenn der Zuwachs zur Bevölkerung proportional ist, so führt dies zur Differentialgleichung mit einer festen Zahl . In diesem Fall sind die Lösungen. Bei spricht man von exponentiellem Wachstum und bei von exponentiellem Verfall.



Beispiel  

Wir betrachten die gewöhnliche Differentialgleichung . Gesucht ist also nach einer Funktion , die differenzierbar ist und deren Ableitung die Gestalt besitzt. Hier ist nicht unmittelbar klar, wie eine Lösung aussieht und wie man sie findet. Durch Probieren findet man die Lösung .


Die Lösung einer Differentialgleichung ist im Allgemeinen nicht eindeutig, man muss noch Anfangsbedingungen festlegen.


Definition  

Es sei eine Teilmenge und es sei

eine Funktion. Es sei vorgegeben. Dann nennt man

das Anfangswertproblem zur gewöhnlichen Differentialgleichung mit der Anfangsbedingung .


Definition  

Es sei eine Teilmenge und es sei

eine Funktion. Es sei vorgegeben. Dann nennt man eine Funktion

auf einem Intervall eine Lösung des Anfangswertproblems

wenn eine Lösung der Differentialgleichung ist und wenn zusätzlich

gilt.

Es gibt kein allgemeines Verfahren eine Differentialgleichung bzw. ein Anfangswertproblem explizit zu lösen. Die Lösbarkeit hängt wesentlich von der gegebenen Funktion ab.

Das eine Differentialgleichung beschreibende Vektorfeld hängt im Allgemeinen von beiden Variablen und ab. Einfache, aber keineswegs triviale Spezialfälle von Differentialgleichungen liegen vor, wenn das Vektorfeld nur von einer der beiden Variablen abhängt.


Definition  

Eine gewöhnliche Differentialgleichung

heißt ortsunabhängig, wenn die Funktion nicht von abhängt, wenn also mit einer Funktion in der einen Variablen gilt.

Eine ortsunabhängige gewöhnliche Differentialgleichung

zu einer stetigen Funktion ist nichts anderes als das Problem, eine Stammfunktion von zu finden; eine Lösung der Differentialgleichung ist ja genau durch die Bedingung ausgezeichnet, dass ist. Da eine Stammfunktion nur bis auf die Integrationskonstante bestimmt ist, besitzt ein ortsunabhängiges Anfangswertproblem eine eindeutige Lösung.


Beispiel  

Wir betrachten das ortsunabhängige Anfangswertproblem

Die Funktion besitzt die Partialbruchzerlegung

daher sind die Stammfunktionen (wir beschränken uns auf ) gleich

Die Anfangsbedingung führt auf

also ist

und die Lösungsfunktion des Anfangswertproblems ist



Definition  

Eine gewöhnliche Differentialgleichung

heißt zeitunabhängig, wenn die Funktion nicht von abhängt, wenn also mit einer Funktion in der einen Variablen gilt.

Bei einer zeitunabhängigen Differentialgleichung hängt nur das zugrunde liegende Vektorfeld nicht von der Zeit ab, die Lösungskurven sind hingegen im Allgemeinen zeitabhängig.



<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF) (PDF englisch)