Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II/Arbeitsblatt 41/kontrolle

Aus Wikiversity



Aufwärmaufgaben

Aufgabe Referenznummer erstellen

Bestimme, ob die reelle Matrix

trigonalisierbar ist oder nicht.


Aufgabe Referenznummer erstellen

Eine lineare Abbildung

werde bezüglich der Standardbasis durch die Matrix

beschrieben. Finde eine Basis, bezüglich der durch die Matrix

beschrieben wird.


Aufgabe Referenznummer erstellen

Eine lineare Abbildung

werde bezüglich der Standardbasis durch die Matrix

beschrieben. Finde eine Basis, bezüglich der durch die Matrix

beschrieben wird.


Die nächsten Aufgaben verwenden die folgende Definition.

Es sei ein Körper, ein - Vektorraum und

eine lineare Abbildung. Dann heißt ein Untervektorraum invariant, wenn

gilt.


Aufgabe Referenznummer erstellen

Es sei ein Körper, ein - Vektorraum und

eine lineare Abbildung. Zeige folgende Eigenschaften.

  1. Der Nullraum ist - invariant.
  2. ist - invariant.
  3. Eigenräume sind -invariant.
  4. Es seien -invariante Unterräume. Dann sind auch und -invariant.
  5. Es sei ein -invarianter Unterraum. Dann sind auch der Bildraum und der Urbildraum -invariant.


Aufgabe Referenznummer erstellen

Es sei ein Körper, ein - Vektorraum und

eine lineare Abbildung und . Zeige, dass der kleinste - invariante Unterraum von , der enthält, gleich

ist.


Aufgabe * Referenznummer erstellen

Es sei ein Körper, ein - Vektorraum und

eine lineare Abbildung. Zeige, dass die durch

definierte Teilmenge von ein - invarianter Unterraum ist.


Aufgabe Referenznummer erstellen

Es sei eine Basis von , bezüglich der die Matrix zur linearen Abbildung

eine obere Dreiecksmatrix sei. Zeige, dass die erzeugten Untervektorräume

- invariant für jedes sind.




Aufgaben zum Abgeben

Aufgabe (4 Punkte)Referenznummer erstellen

Entscheide, ob die Matrix

über trigonalisierbar ist.


Aufgabe (3 Punkte)Referenznummer erstellen

Bestimme, ob die reelle Matrix

trigonalisierbar ist oder nicht.


Aufgabe (3 Punkte)Referenznummer erstellen

Eine lineare Abbildung

werde bezüglich der Standardbasis durch die Matrix

beschrieben. Finde eine Basis, bezüglich der durch die Matrix

beschrieben wird.


Aufgabe (2 Punkte)Aufgabe 41.11 ändern

Es sei eine Jordanmatrix zum Eigenwert . Zeige, dass der Eigenraum von zum Eigenwert eindimensional ist und dass es keine weiteren Eigenvektoren gibt.


Aufgabe (4 Punkte)Referenznummer erstellen

Es sei eine reelle -Matrix, die über nicht trigonalisierbar ist. Zeige, dass über diagonalisierbar ist.


Eine Isometrie auf einem euklidischen Vektorraum heißt eigentlich, wenn ihre Determinante gleich ist.


Aufgabe (2 Punkte)Referenznummer erstellen

Es sei

eine eigentliche Isometrie. Es sei vorausgesetzt, dass trigonalisierbar ist. Zeige, dass dann sogar diagonalisierbar ist.




<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)