Kurs:Mathematik für Anwender (Osnabrück 2020-2021)/Teil I/Arbeitsblatt 6
- Übungsaufgaben
Berechne im Polynomring das Produkt
Es sei ein Körper und sei der Polynomring über . Zeige, dass der Grad folgende Eigenschaften erfüllt.
Zeige, dass in einem Polynomring über einem Körper gilt: Wenn beide ungleich sind, so ist auch .
Es sei ein Körper und sei der Polynomring über . Es sei . Zeige, dass die Einsetzungsabbildung, also die Zuordnung
folgende Eigenschaften erfüllt (dabei seien ).
Setze in das Polynom die Zahl ein.
Zeige, dass
eine Nullstelle des Polynoms
ist.
Zeige, dass die Hintereinanderschaltung (also das Einsetzen eines Polynoms in ein weiteres) von zwei Polynomen wieder ein Polynom ist.
Es sei
ein reelles Polynom mit . Man gebe in Abhängigkeit von den Koeffizienten eine Schranke derart an, dass
für alle gilt.
Es sei ein Körper und sei der Polynomring über . Wie lautet das Ergebnis der Division mit Rest, wenn man ein Polynom durch teilt?
Führe in die Division mit Rest „ durch “ für die beiden Polynome und durch.
Es sei ein Körper und sei der Polynomring über . Zeige, dass jedes Polynom , , eine Produktzerlegung
mit und einem nullstellenfreien Polynom besitzt, wobei die auftretenden verschiedenen Zahlen und die zugehörigen Exponenten bis auf die Reihenfolge eindeutig bestimmt sind.
Die Exponenten heißen dabei die Nullstellenordnung der Nullstelle im Polynom.
Es seien und verschiedene normierte Polynome vom Grad über einem Körper . Wie viele Schnittpunkte besitzen die beiden Graphen maximal?
Es sei ein nichtkonstantes Polynom. Zeige, dass in Linearfaktoren zerfällt.
Bestimme die kleinste reelle Zahl, für die die Bernoullische Ungleichung zum Exponenten gilt.
Es sei ein Polynom mit reellen Koeffizienten und sei eine Nullstelle von . Zeige, dass dann auch die konjugiert-komplexe Zahl eine Nullstelle von ist.
Es sei ein angeordneter Körper und der Polynomring über . Sei
Zeige, dass die drei folgenden Eigenschaften besitzt.
- Entweder ist oder oder .
- Aus folgt .
- Aus folgt .
Es sei der Polynomring über einem Körper . Zeige, dass die Menge
wobei zwei Brüche und genau dann als gleich gelten, wenn ist, mit einer geeigneten Addition und Multiplikation ein Körper ist.
Berechne in die folgenden Ausdrücke.
- Das Produkt
- Die Summe
- Das Inverse von
Skizziere die Graphen der folgenden rationalen Funktionen
wobei jeweils das Komplement der Nullstellenmenge des Nennerpolynoms sei.
- ,
- ,
- ,
- ,
- ,
- ,
- .
Es sei ein angeordneter Körper, der Polynomring und
der Körper der rationalen Funktionen über . Zeige unter Verwendung von Aufgabe 6.19, dass man zu einem angeordneten Körper machen kann, der nicht archimedisch angeordnet ist.
Es sei eine reelle Zahl, . Beweise für durch Induktion die Beziehung
Berechne die Hintereinanderschaltungen und der beiden rationalen Funktionen
Zeige, dass die Hintereinanderschaltung von zwei rationalen Funktionen wieder rational ist.
- Aufgaben zum Abgeben
Aufgabe (3 Punkte)
Berechne im Polynomring das Produkt
Aufgabe (3 Punkte)
Führe in die Division mit Rest „ durch “ für die beiden Polynome und durch.
Aufgabe (4 Punkte)
Führe in die Division mit Rest „ durch “ für die beiden Polynome und durch.
Aufgabe (2 Punkte)
Beweise die Formel
für ungerade.
Aufgabe (4 Punkte)
Es sei ein nichtkonstantes Polynom mit reellen Koeffizienten. Zeige, dass man als ein Produkt von reellen Polynomen vom Grad oder schreiben kann.
<< | Kurs:Mathematik für Anwender (Osnabrück 2020-2021)/Teil I | >> |
---|