Kurs:Analysis (Osnabrück 2013-2015)/Teil I/Arbeitsblatt 8

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Übungsaufgaben

Bei den Rechenaufgaben zu den komplexen Zahlen muss das Ergebnis immer in der Form mit reellen Zahlen angegeben werden, wobei diese so einfach wie möglich sein sollen.

Aufgabe

Berechne die folgenden Ausdrücke innerhalb der komplexen Zahlen.

  1. .
  2. .
  3. .
  4. .
  5. .
  6. .


Aufgabe

Zeige, dass für reelle Zahlen die Addition und die Multiplikation als reelle Zahlen und als komplexe Zahlen übereinstimmen.


Aufgabe

Zeige, dass die komplexen Zahlen einen Körper bilden.


Aufgabe

Zeige, dass mit der komponentenweisen Addition und der komponentenweisen Multiplikation kein Körper ist.


Aufgabe

Skizziere die folgenden Teilmengen.

  1. ,
  2. ,
  3. .


Aufgabe *

a) Berechne

b) Bestimme das inverse Element zu .

c) Welchen Abstand hat aus Teil (b) zum Nullpunkt?


Aufgabe *

Löse die lineare Gleichung

über und berechne den Betrag der Lösung.


Aufgabe

Finde zu einer komplexen Zahl die inverse komplexe Zahl mit Hilfe eines reellen linearen Gleichungssystems mit zwei Variablen und zwei Gleichungen.


Aufgabe

Beweise die folgenden Aussagen zu Real- und Imaginärteil von komplexen Zahlen.

  1. .
  2. .
  3. .
  4. Für ist
  5. genau dann, wenn ist, und dies ist genau dann der Fall, wenn ist.


Aufgabe

Zeige, dass innerhalb der komplexen Zahlen folgende Rechenregeln gelten.

  1. .
  2. .
  3. .
  4. .
  5. Für ist .


Aufgabe

Zeige die folgenden Regeln für den Betrag von komplexen Zahlen.

  1. Für reelles stimmen reeller und komplexer Betrag überein.
  2. Es ist genau dann, wenn ist.
  3. .
  4. .
  5. .
  6. Für ist .


Aufgabe

Zeige, dass eine Folge komplexer Zahlen

genau dann konvergiert, wenn sowohl als auch konvergiert. Für den Grenzwert gilt dabei


Aufgabe

Es seien und konvergente Folgen in . Beweise die folgenden Aussagen.

  1. Die Folge ist konvergent und es gilt
  2. Die Folge ist konvergent und es gilt
  3. Für gilt
  4. Es sei und für alle . Dann ist ebenfalls konvergent mit
  5. Es sei und für alle . Dann ist ebenfalls konvergent mit


Aufgabe *

Sei eine komplexe Zahl mit . Zeige, dass die Folge gegen konvergiert.


Aufgabe

Sei eine komplexe Zahl mit . Zeige, dass die Folge divergiert.


Aufgabe

Bestätige die in Beispiel ***** angegebene Formel für die Quadratwurzel einer komplexen Zahl im Fall .


Aufgabe

Seien mit . Zeige, dass es für die Gleichung

mindestens eine komplexe Lösung gibt.


Aufgabe

Seien mit . Man charakterisiere, wann es für die Gleichung

genau eine Lösung in gibt und wann zwei Lösungen.


Aufgabe

Man bestimme die beiden komplexen Lösungen der Gleichung


Der Begriff eines Häufungspunktes lässt sich unmittelbar auf komplexe Folgen erweitern.

Aufgabe

Bestimme die Häufungspunkte der komplexen Folge . Man gebe für jeden Häufungspunkt eine Teilfolge an, die gegen diesen Punkt konvergiert.




Aufgaben zum Abgeben

Aufgabe (3 Punkte)

Berechne die komplexen Zahlen

für .


Aufgabe (3 Punkte)

Zeige, dass für die komplexe Konjugation die folgenden Rechenregeln gelten.

  1. .
  2. .
  3. .
  4. Für ist .
  5. .
  6. genau dann, wenn ist.


Aufgabe (3 Punkte)

Berechne die Quadratwurzeln, die vierten Wurzeln und die achten Wurzeln von .


Aufgabe (4 Punkte)

Man finde alle drei komplexen Zahlen , die die Bedingung

erfüllen.


Aufgabe (5 Punkte)

Es seien komplexe Zahlen in der Kreisscheibe mit Mittelpunkt und Radius , also in , gegeben. Zeige, dass es einen Punkt mit der Eigenschaft

gibt.




Kollektivaufgabe

Aufgabe (4 Punkte)

Korrigiere den Wikipediaartikel „Dedekindscher Schnitt“, so dass die beiden Definitionen äquivalent werden.

(Die Bearbeitung muss dauerhaft akzeptiert werden.)


<< | Kurs:Analysis (Osnabrück 2013-2015)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)