Kurs:Analysis (Osnabrück 2013-2015)/Teil III/Arbeitsblatt 79
- Aufwärmaufgaben
Zeige, dass das Produkt von zwei differenzierbaren Mannigfaltigkeiten und selbst wieder eine differenzierbare Mannigfaltigkeit ist.
Es seien und abgeschlossene Untermannigfaltigkeiten. Zeige, dass ihr Produkt eine abgeschlossene Untermannigfaltigkeit von ist.
Zeige, dass das Produkt von zwei wegzusammenhängenden differenzierbaren Mannigfaltigkeiten und wieder wegzusammenhängend ist.
Es sei eine differenzierbare Mannigfaltigkeit und
die Diagonalabbildung in das Produkt . Zeige, dass die Diagonale eine abgeschlossene Untermannigfaltigkeit ist.
Es sei eine differenzierbare Mannigfaltigkeit. Zeige, dass die Vertauschungsabbildung
ein Diffeomorphismus ist.
Beschreibe den Torus als Rotationsmenge im .
Es sei und betrachte die Abbildung
Bestimme die regulären Punkte der Abbildung und die Gestalt der Faser über . Wie ändert sich die Gestalt beim Übergang von zu .
Definiere die Abbildung
die zu einem Winkelpaar die erste Komponente als Äquatorpunkt interpretiert und von dort aus mit der zweiten Komponente auf dem Großkreis Richtung Norden wandert. Ist die Abbildung differenzierbar? Wie sehen die Fasern der Abbildung aus?
Man gebe ein heuristisches Argument, dass die Einheitssphäre und der Torus nicht homöomorph sind.
Zu welcher differenzierbaren Mannigfaltigkeit ist , also der Torus ohne die Diagonale, diffeomorph?
Betrachte die Kreislinie . Definiere eine differenzierbare Gruppenstruktur auf , also ein neutrales Element , eine differenzierbare Abbildung
und eine differenzierbare Abbildung
derart, dass mit diesen Daten zu einer kommutativen Gruppe wird.
Es sei ein Torus. Man gebe eine surjektive differenzierbare Abbildung
derart an, dass auch die Tangentialabbildung
in jedem Punkt surjektiv ist.
Es sei ein Körper, ein - Vektorraum und eine Menge mit einer Verknüpfung
und einer Abbildung
Es sei
eine surjektive Abbildung mit
für alle und . Zeige, dass ein -Vektorraum ist.
Es sei ein Körper und ein - Vektorraum. Zeige die Gleichheit .
Es sei ein Körper und ein - dimensionaler - Vektorraum. Es sei . Zeige .
- Aufgaben zum Abgeben
Aufgabe (6 Punkte)
Es sei ein Torus und seien zwei Punkte. Zeige, dass es eine gemeinsame Kartenumgebung derart gibt, dass die Kartenabbildung
eine Homöomorphie mit ergibt.
Aufgabe (4 Punkte)
<< | Kurs:Analysis (Osnabrück 2013-2015)/Teil III | >> |
---|