Kurs:Analysis (Osnabrück 2014-2016)/Teil I/Arbeitsblatt 20/kontrolle

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Übungsaufgaben
Gar nicht mehr lange! Wir wünschen schon jetzt frohe Weihnachten!

Aufgabe Referenznummer erstellen

Es seien

konvexe Funktionen. Zeige, dass die Summe ebenfalls konvex ist.


Aufgabe Referenznummer erstellen

Es sei

eine Funktion. Zeige, dass genau dann konvex ist, wenn konkav ist.


Aufgabe Referenznummer erstellen

Es seien

konvexe Funktionen. Zeige durch Beispiele, dass die Differenz konvex oder konkav sein kann, aber weder konvex noch konkav sein muss.


Aufgabe Referenznummer erstellen

Es seien

konvexe Funktionen. Zeige durch Beispiele, dass das Produkt konvex oder konkav sein kann, aber weder konvex noch konkav sein muss.


Aufgabe Referenznummer erstellen

Es sei

eine stetige Funktion auf einem Intervall . Zeige, dass genau dann konvex ist, wenn für jedes Punktepaar und mit die Verbindungsstrecke oberhalb des Graphen von verläuft.

(Bemerkung: Eine konvexe Funktion auf einem offenen Intervall ist übrigens immer stetig.)

Aufgabe Aufgabe 20.6 ändern

Es sei ein Intervall und

eine zweimal differenzierbare Funktion. Zeige, dass genau dann eine konvexe Funktion ist, wenn für die zweite Ableitung für alle gilt.


Aufgabe Referenznummer erstellen

Es sei ein Polynom mit ungeradem Grad . Zeige, dass weder konvex noch konkav sein kann.


Aufgabe Aufgabe 20.8 ändern

Es sei eine Potenzreihe mit Konvergenzradius . Zeige, dass der Konvergenzradius der Reihe ebenfalls ist.


Aufgabe Referenznummer erstellen

Bestimme die Ableitung der Funktion


Aufgabe Referenznummer erstellen

Höhere Ableitung/x e hoch x/Induktion/Aufgabe


Aufgabe * Aufgabe 20.11 ändern

Bestimme die Ableitung der Funktion


Aufgabe Referenznummer erstellen

Eine Währungsgemeinschaft habe eine Inflation von jährlich . Nach welchem Zeitraum (in Jahren und Tagen) haben sich die Preise verdoppelt?


Aufgabe * Referenznummer erstellen

Bestimme den Grenzwert


Aufgabe * Referenznummer erstellen

Bestimme den Grenzwert


Aufgabe Referenznummer erstellen

Es sei

eine differenzierbare Funktion mit den Eigenschaften

Zeige, dass für alle ist.


Aufgabe * Referenznummer erstellen

Es sei eine auf einem offenen Intervall definierte Funktion. Wir interessieren uns für den Limes

zu einem Punkt .

  1. Bestimme diesen Limes für die Funktion

    mit einem .

  2. Es sei in differenzierbar. Zeige
  3. Überprüfe das Ergebnis aus (1) mit Hilfe der Formel aus (2).


Aufgabe Referenznummer erstellen

Berechne bis auf drei Nachkommastellen den Wert von .


Aufgabe Aufgabe 20.18 ändern

Bestimme die Ableitung der Sinus- und der Kosinusfunktion unter Verwendung von Satz 20.9.


Aufgabe Referenznummer erstellen

Bestimme die Ableitung der Sinus- und der Kosinusfunktion unter Verwendung von Satz 15.10  (4).


Aufgabe Referenznummer erstellen

Bestimme die -te Ableitung der Sinusfunktion.


Aufgabe * Referenznummer erstellen

Wir betrachten die Funktion

a) Bestimme die Ableitung .

b) Bestimme die zweite Ableitung .


Aufgabe Referenznummer erstellen

Bestimme die Ableitung der Funktion


Aufgabe Referenznummer erstellen

Bestimme für die Ableitung der Funktion


Aufgabe Referenznummer erstellen

Es sei eine konvergente Potenzreihe. Bestimme die Ableitungen .


Aufgabe Referenznummer erstellen

Bestimme für die folgenden Funktionen, ob der Funktionslimes existiert und welchen Wert er gegebenenfalls annimmt.

  1. ,
  2. ,
  3. ,
  4. .


Aufgabe Referenznummer erstellen

Bestimme für die folgenden Funktionen, ob der Funktionslimes für , , existiert und welchen Wert er gegebenenfalls annimmt.

  1. ,
  2. ,
  3. .


Aufgabe Referenznummer erstellen

Bestimme den Grenzwert

in Abhängigkeit von .


Der Verlauf der Hyperbelfunktionen im Reellen.


Die für durch

definierte Funktion heißt Sinus hyperbolicus.


Die für durch

definierte Funktion heißt Kosinus hyperbolicus.


Aufgabe Aufgabe 20.28 ändern

Zeige die folgenden Eigenschaften von Sinus hyperbolicus und Kosinus hyperbolicus (dabei ist .)


Aufgabe Referenznummer erstellen


Aufgabe Referenznummer erstellen

Beweise die Additionstheoreme für die Hyperbelfunktionen, also

a)

b)


Aufgabe Referenznummer erstellen

Zeige, dass der Sinus hyperbolicus auf streng wachsend ist.


Aufgabe Referenznummer erstellen

Zeige, dass der Kosinus hyperbolicus auf streng fallend und auf streng wachsend ist.


Aufgrund dieser beiden Aufgaben gibt es Umkehrfunktionen, die man Areasinus hyperbolicus bzw. Areakosinus hyperbolicus nennt.

Aufgabe * Referenznummer erstellen

Zeige, dass für , , die Gleichheit

gilt.




Die Weihnachtsaufgabe für die ganze Familie

Aufgabe Aufgabe 20.34 ändern

Welches Bildungsgesetz liegt der Folge

zugrunde?

(Es wird behauptet, dass diese Aufgabe für Grundschulkinder sehr einfach und für Mathematiker sehr schwierig ist.)



Aufgaben zum Abgeben

Aufgabe (4 Punkte)Aufgabe 20.34 ändern

Es sei

eine konvexe Funktion, seien und mit . Zeige die Jensensche Ungleichung


Aufgabe (3 Punkte)Referenznummer erstellen

Bestimme das Konvexitätsverhalten und die Wendepunkte der Funktion


Aufgabe (4 Punkte)Referenznummer erstellen

Es sei

eine ungerade Funktion, die nicht linear sei. Zeige, dass weder konvex noch konkav sein kann.


Aufgabe (1 Punkt)Referenznummer erstellen

Bestimme die Ableitung der Funktion


Aufgabe (2 Punkte)Referenznummer erstellen

Bestimme die Ableitung der Funktion


Aufgabe (4 Punkte)Referenznummer erstellen

Wir betrachten die Abbildung

die dem Bildungsgesetz aus Aufgabe 20.34 entspricht.

  1. Ist wachsend?
  2. Ist surjektiv?
  3. Ist injektiv?
  4. Besitzt einen Fixpunkt?




Die Weihnachtsaufgabe

Aufgabe (10 Punkte)Referenznummer erstellen

Wir betrachten die Abbildung

die dem Bildungsgesetz aus Aufgabe 20.34 entspricht. Unter einem Zykel von der Länge verstehen wir ein derart, dass ( bezeichnet die -te Hintereinanderschaltung von mit sich selbst) und ist für . Besitzt Zykel der Länge ?

(Diese Aufgabe ist gesondert abzugeben, die Deckelregel findet für sie keine Anwendung.)


<< | Kurs:Analysis (Osnabrück 2014-2016)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)