Kurs:Analysis (Osnabrück 2014-2016)/Teil I/Arbeitsblatt 24/kontrolle

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Übungsaufgaben

Aufgabe Referenznummer erstellen

Berechne das bestimmte Integral , wobei die Funktion durch

gegeben ist.


Aufgabe * Referenznummer erstellen

Berechne das bestimmte Integral zur Funktion

über .


Aufgabe Referenznummer erstellen

Berechne das bestimmte Integral


Aufgabe * Referenznummer erstellen

Berechne den Flächeninhalt der Fläche, die durch die beiden Graphen zu und eingeschlossen wird.


Aufgabe * Referenznummer erstellen

Bestimme den Durchschnittswert der Quadratwurzel für . Vergleiche diesen Wert mit der Wurzel des arithmetischen Mittels von und und mit dem arithmetischen Mittel der Wurzel von und der Wurzel von .


Aufgabe * Referenznummer erstellen

Eine Person will ein einstündiges Sonnenbad nehmen. Die Intensität der Sonneneinstrahlung werde im Zeitintervall (in Stunden) durch die Funktion

beschrieben. Bestimme den Startzeitpunkt des Sonnenbades, so dass die Gesamtsonnenausbeute maximal wird.


Aufgabe * Referenznummer erstellen

Zeige, dass für jedes die Abschätzung

gilt. Tipp: Betrachte die Funktion auf dem Intervall .


Aufgabe Referenznummer erstellen

Bestimme die zweite Ableitung der Funktion


Aufgabe Referenznummer erstellen

Es sei eine differenzierbare Funktion und es sei eine stetige Funktion. Zeige, dass die Funktion

differenzierbar ist und bestimme ihre Ableitung.


Aufgabe Referenznummer erstellen

Es sei eine stetige Funktion. Betrachte die durch

definierte Folge. Entscheide, ob diese Folge konvergiert und bestimme gegebenenfalls den Grenzwert.


Aufgabe Referenznummer erstellen

Es sei eine konvergente Reihe mit für alle und sei eine Riemann-integrierbare Funktion.

Zeige, dass dann die Reihe

absolut konvergent ist.


Aufgabe Referenznummer erstellen

Sei eine Riemann-integrierbare Funktion auf mit für alle . Man zeige: Ist stetig in einem Punkt mit , dann gilt


Aufgabe Referenznummer erstellen

Man zeige, dass die Gleichung
eine einzige Lösung besitzt.


Aufgabe Referenznummer erstellen

Seien

zwei stetige Funktionen mit der Eigenschaft

Beweise, dass es ein mit gibt.


Aufgabe Referenznummer erstellen

Es seien

zwei stetige Funktionen und es sei für alle . Zeige, dass es dann ein gibt mit


Aufgabe Referenznummer erstellen

Bestimme den Flächeninhalt unterhalb des Graphen der Sinusfunktion zwischen und .


Aufgabe * Referenznummer erstellen

Sei

stetig mit

für jede stetige Funktion . Zeige .




Aufgaben zum Abgeben

Aufgabe (3 Punkte)Referenznummer erstellen

Berechne das bestimmte Integral


Aufgabe (3 Punkte)Referenznummer erstellen

Bestimme eine Stammfunktion für die Funktion


Aufgabe (4 Punkte)Referenznummer erstellen

Berechne den Flächeninhalt der Fläche, die durch die Graphen der beiden Funktionen und mit

eingeschlossen wird.


Aufgabe (4 Punkte)Referenznummer erstellen

Wir betrachten die Funktion

mit

Zeige, unter Bezug auf die Funktion , dass eine Stammfunktion besitzt.


Aufgabe (5 Punkte)Referenznummer erstellen

Betrachte die durch

gegebene Folge. Zeige, dass diese Folge konvergiert und bestimme den Grenzwert.

(Verwende Eigenschaften der Wurzelfunktion.)

Aufgabe (6 Punkte)Referenznummer erstellen

Man gebe ein Beispiel für eine stetige, streng wachsende Funktion

derart, dass es ein gibt mit der Eigenschaft, dass das Treppenintegral zur maximalen unteren Treppenfunktion zur äquidistanten Unterteilung in Teilintervalle größer ist als dasjenige zu Teilintervallen (d.h. mehr Teilungspunkte führen zu einer schlechteren Approximation).

(Ignoriere zuerst die beiden Bedingungen stetig und streng.)


<< | Kurs:Analysis (Osnabrück 2014-2016)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)