Kurs:Analysis (Osnabrück 2014-2016)/Teil I/Arbeitsblatt 7/kontrolle

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Übungsaufgaben

Aufgabe Referenznummer erstellen

Zeige, dass das Quadrieren

eine wachsende Funktion ist. Man folgere daraus, dass auch die Quadratwurzel

eine wachsende Funktion ist.


Aufgabe Referenznummer erstellen

Zeige, dass für nichtnegative reelle Zahlen und die Beziehung

besteht.


Aufgabe * Referenznummer erstellen

Begründe geometrisch, dass die Wurzeln , , als Länge von „natürlichen“ Strecken vorkommen.

Tipp: Satz des Pythagoras.


Halbkreis.jpg


Aufgabe Referenznummer erstellen

Zeige, dass man zu jeder gegebenen Streckenlänge (also jedem ) die Quadratwurzel mit Zirkel und Lineal konstruieren kann.

Tipp: Satz des Pythagoras und Bild rechts.

Aufgabe * Referenznummer erstellen

Formuliere und beweise die Lösungsformel für eine quadratische Gleichung

mit , .


Aufgabe * Referenznummer erstellen

Es sei eine reelle Zahl, von welcher der Beginn der kanonischen Dezimalbruchentwicklung gleich

(die weiteren Ziffern sind nicht bekannt). Was kann man über die Dezimalbruchentwicklung von sagen? In welchem (möglichst kleinen) Intervall liegt ?


Aufgabe Referenznummer erstellen

Die beiden reellen Zahlen und seien durch ihre Dezimalbruchentwicklung

und

gegeben. Man gebe unter Bezug auf diese Ziffernentwicklungen eine Folge mit rationalen Gliedern an, die gegen konvergiert.


Vor der nächsten Aufgabe erinnern wir an die beiden folgenden Definitionen.


Zu zwei reellen Zahlen und heißt

das arithmetische Mittel.


Zu zwei nichtnegativen reellen Zahlen und heißt

das geometrische Mittel.


Aufgabe * Referenznummer erstellen

Es seien und zwei nichtnegative reelle Zahlen. Zeige, dass das arithmetische Mittel der beiden Zahlen mindestens so groß wie ihr geometrisches Mittel ist.


Aufgabe Referenznummer erstellen

Es seien positive reelle Zahlen. Wir definieren rekursiv zwei Folgen und durch , und durch

Zeige, dass eine Intervallschachtelung ist.


Aufgabe Aufgabe 7.10 ändern

Es sei , , eine Intervallschachtelung in und sei eine reelle Folge mit für alle . Zeige, dass diese Folge gegen die durch die Intervallschachtelung bestimmte Zahl konvergiert.


Aufgabe Referenznummer erstellen

Untersuche die durch

gegebene Folge () auf Konvergenz.


Aufgabe Referenznummer erstellen

Bestimme den Grenzwert der durch

definierten reellen Folge.


Aufgabe Referenznummer erstellen

Sei und . Zeige, dass zu einem beliebigen Startwert durch

eine Folge definiert wird, die gegen konvergiert.


Aufgabe Aufgabe 7.14 ändern

Es sei , , und . Zeige .


Aufgabe Referenznummer erstellen

Es seien und beschränkte Teilmengen von . Ferner sei und .

  1. Zeige, dass .
  2. Wie lautet die entsprechende Formel für ?
  3. Zeige, dass .
  4. Was lässt sich über sagen?
  5. Wie lautet die Entsprechung zu 3. für unendlich viele Mengen?


Aufgabe Referenznummer erstellen

Es sei ein angeordneter Körper, der nicht archimedisch angeordnet sei. Zeige, dass für die Aussage das Satzes von Bolzano-Weierstraß nicht gilt.


Aufgabe Referenznummer erstellen

Zeige die folgenden Abschätzungen.

a)

b)


Aufgabe Referenznummer erstellen

Berechne mit einem Computer die ersten hundert Nachkommastellen im Zehnersystem von

Für welches wird diese Genauigkeit erreicht?


Aufgabe * Aufgabe 7.19 ändern

Es sei , , eine Intervallschachtelung in . Zeige, dass der Durchschnitt

aus genau einem Punkt besteht.




Aufgaben zum Abgeben

Aufgabe (3 Punkte)Referenznummer erstellen

Entscheide, ob die Folge

konvergiert, und bestimme gegebenenfalls den Grenzwert.


Aufgabe (5 Punkte)Referenznummer erstellen

Untersuche die durch

gegebene Folge auf Konvergenz.


Aufgabe (4 Punkte)Referenznummer erstellen

Es sei die Folge der Fibonacci-Zahlen und

Zeige, dass diese Folge in konvergiert und dass der Grenzwert die Bedingung

erfüllt. Berechne daraus .

Tipp: Zeige zuerst mit Hilfe der Simpson-Formel, dass man mit diesen Brüchen eine Intervallschachtelung basteln kann.

Aufgabe (5 Punkte)Referenznummer erstellen

Es sei ein angeordneter Körper mit der Eigenschaft, dass in ihm jede nichtleere, nach oben beschränkte Teilmenge ein Supremum besitzt. Zeige, dass vollständig ist.


Aufgabe (6 Punkte)Referenznummer erstellen

Zeige, dass jede Folge in eine monotone Teilfolge besitzt.


<< | Kurs:Analysis (Osnabrück 2014-2016)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)