Kurs:Analysis (Osnabrück 2014-2016)/Teil II/Arbeitsblatt 58/kontrolle

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Übungsaufgaben

Aufgabe Referenznummer erstellen

Es sei ein kompaktes Intervall und

Wir setzen

Berechne auf zwei unterschiedliche Weisen.


Aufgabe Referenznummer erstellen

Bestätige Satz 58.3 für die Funktion


Aufgabe Referenznummer erstellen

Sei

Berechne die Integrale zum Parameter über und zum Parameter über . Bestimme jeweils die extremalen Integrale.


Die Himmelsscheibe von Nebra. Ist die Mondsichel darauf sternförmig?

Aufgabe Referenznummer erstellen

Betrachte zu mit und die „sichelförmige“ Menge

Für welche ist diese Menge sternförmig?


Aufgabe Referenznummer erstellen

Zeige, dass eine sternförmige Teilmenge zusammenhängend ist.


Aufgabe Referenznummer erstellen

Es sei eine Teilmenge. Zeige, dass genau dann ein (nichtleeres) Intervall ist, wenn sternförmig ist.


Aufgabe Referenznummer erstellen

Es seien () endlich viele Punkte im . Zeige, dass nicht sternförmig ist.


Aufgabe Referenznummer erstellen

Man gebe ein Beispiel für eine sternförmige Teilmenge an, die nur bezüglich eines einzigen Punktes sternförmig ist.


Aufgabe Referenznummer erstellen

Man gebe ein Beispiel für eine offene, sternförmige Teilmenge an, die nur bezüglich eines einzigen Punktes sternförmig ist.


Aufgabe Referenznummer erstellen

Überprüfe, ob das Vektorfeld

die Integrabilitätsbedingung erfüllt oder nicht.


Aufgabe Referenznummer erstellen

Überprüfe, ob das Vektorfeld

die Integrabilitätsbedingung erfüllt oder nicht.


Aufgabe Referenznummer erstellen

Zeige, dass das Vektorfeld

ein Gradientenfeld ist und bestimme ein Potential dazu.


Ob ein Vektorfeld auf die Integrabilitätsbedingung erfüllt lässt sich äquivalent mit der sogenannten Rotation ausdrücken.


Zu einem partiell differenzierbaren Vektorfeld

auf einer offenen Teilmenge nennt man

die Rotation von .


Die Rotation ist ebenfalls ein Vektorfeld.

Aufgabe Referenznummer erstellen

Es sei

ein stetig differenzierbares Vektorfeld auf einer offenen Teilmenge . Zeige, dass genau dann die Integrabilitätsbedingung erfüllt, wenn ist.


Aufgabe Referenznummer erstellen

Berechne zum Vektorfeld

die Rotation.


Aufgabe * Referenznummer erstellen

Wir betrachten das Vektorfeld

mit

Zeige auf zweifache Weise, dass kein Gradientenfeld ist.

  1. Mit der Integrabilitätsbedingung.
  2. Mit Wegintegralen.


Aufgabe * Referenznummer erstellen

Wir betrachten das Vektorfeld

a) Zeige mit Hilfe der Integrabilitätsbedingung, dass ein Gradientenfeld ist.

b) Bestimme ein Potential zu .


Aufgabe * Referenznummer erstellen

Wir betrachten das Vektorfeld

a) Zeige mit Hilfe der Integrabilitätsbedingung, dass ein Gradientenfeld ist.

b) Bestimme ein Potential zu .


Aufgabe * Aufgabe 58.18 ändern

Es sei

ein stetig differenzierbares Vektorfeld auf einer offenen Menge

und es sei

Zeige

wobei den einmal gegen den Uhrzeigersinn durchlaufenen Kreisweg um mit Radius bezeichnet.




Aufgaben zum Abgeben

Aufgabe (3 Punkte)Referenznummer erstellen

Bestimme, ob zur Funktion

der Subgraph und ob der Epigraph sternförmig ist.


Aufgabe (6 Punkte)Referenznummer erstellen

Es sei eine sternförmige Teilmenge. Zeige, dass auch der Abschluss sternförmig ist.


Aufgabe (3 Punkte)Referenznummer erstellen

Zeige, dass das Vektorfeld

ein Gradientenfeld ist und bestimme ein Potential dazu.


Aufgabe (3 Punkte)Referenznummer erstellen

Berechne zum Vektorfeld

die Rotation.



<< | Kurs:Analysis (Osnabrück 2014-2016)/Teil II | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)