Zum Inhalt springen

Kurs:Einführung in die mathematische Logik (Osnabrück 2014)/Arbeitsblatt 15

Aus Wikiversity



Übungsaufgaben

Warum sind mathematische Beweise schwierig, obwohl sie (zumindest für erststufige Aussagen) aufgrund des Vollständigkeitssatzes mit einem sehr begrenzten und übersichtlichen formalen Regelwerk durchgeführt werden können?



Diskutiere Metasprache und Objektsprache anhand der Formulierung „im Widerspruch zur Widerspruchsfreiheit“ aus dem Beweis zu Lemma 15.1.



Unterscheide zwischen den verschiedenen Bedeutungen von Gleichheit.

  1. Gleichheit von Elementen in einer Menge.
  2. Gleichheit von Zeichenketten.
  3. Das Gleichheitssymbol in einer erststufigen Sprache.



Es sei ein Symbolalphabet (das mindestens eine Variable enthalte) einer Sprache erster Stufe und die zugehörige Termmenge. Zeige, dass man als Grundmenge einer Interpretation von nehmen kann, indem man Variablen, Konstanten und Funktionssymbole „natürlich“ und Relationssymbole willkürlich interpretiert.



Es sei ein Symbolalphabet einer Sprache erster Stufe. Es seien - Terme mit

gegeben. Zeige, dass es sich bei und um eine identische Zeichenreihe handelt.



Es sei ein atomarer Ausdruck, der zugleich eine Tautologie ist, also . Zeige, dass gleich mit einem - Term ist.



Es sei eine Ausdrucksmenge, die über beliebig großen endlichen Grundmengen erfüllbar ist. Zeige, dass auch über einer unendlichen Menge erfüllbar ist.



Man mache sich Gedanken zu den folgenden Zitaten aus Ludwig Wittgensteins Tractatus logico-philosophicus.

„6.2 Die Mathematik ist eine logische Methode. Die Sätze der Mathematik sind Gleichungen, also Scheinsätze. 6.21 Der Satz der Mathematik drückt keinen Gedanken aus“.

„6.22 Die Logik der Welt, die die Sätze der Logik in den Tautologien zeigen, zeigt die Mathematik in den Gleichungen“.

„6.2321 Und, dass die Sätze der Mathematik bewiesen werden können, heißt ja nichts anderes, als dass ihre Richtigkeit einzusehen ist, ohne dass das, was sie ausdrücken, selbst mit den Tatsachen auf seine Richtigkeit hin verglichen werden muss“.

„6.234 Die Mathematik ist eine Methode der Logik.

6.2341 Das Wesentliche der mathematischen Methode ist es, mit Gleichungen zu arbeiten. Auf dieser Methode beruht es nämlich, dass jeder Satz der Mathematik sich von selbst verstehen muss“.

„6.24 Die Methode der Mathematik, zu ihren Gleichungen zu kommen, ist die Substitutionsmethode“. (...)


Wir besprechen den für die Konstruktion eines Modells (zum Satz von Henkin) wichtigen Begriff einer Äquivalenzrelation anhand einiger Aufgaben.


Wir betrachten die ganzen Zahlen und eine fixierte natürliche Zahl . Zeige, dass auf durch

eine Äquivalenzrelation definiert wird. Wie viele Äquivalenzklassen gibt es?



Es sei ein Körper, ein - Vektorraum und ein Untervektorraum. Wir betrachten die Relation auf , die durch

definiert ist. Zeige, dass diese Relation eine Äquivalenzrelation ist.



Es sei ein Körper und ein - Vektorraum. Zeige, dass die Relation auf , die durch

eine Äquivalenzrelation ist. Was sind die Äquivalenzklassen?



Betrachte auf die Relation

a) Zeige, dass eine Äquivalenzrelation ist.

b) Zeige, dass es zu jedem ein äquivalentes Paar mit gibt.

c) Es sei die Menge der Äquivalenzklassen dieser Äquivalenzrelation. Wir definieren eine Abbildung

Zeige, dass injektiv ist.

d) Definiere auf (aus Teil c) eine Verknüpfung derart, dass mit dieser Verknüpfung und mit als neutralem Element eine Gruppe wird, und dass für die Abbildung die Beziehung

für alle gilt.



Seien und Mengen und sei eine Abbildung. Zeige, dass durch die Festlegung

wenn

eine Äquivalenzrelation auf definiert wird.



Es sei die Menge der zweimal stetig differenzierbaren Funktionen von nach . Definiere auf eine Relation durch

a) Zeige, dass dies eine Äquivalenzrelation ist.

b) Finde für jede Äquivalenzklasse dieser Äquivalenzrelation einen polynomialen Vertreter.

c) Zeige, dass diese Äquivalenzrelation mit der Addition von Funktionen verträglich ist.

d) Zeige, dass diese Äquivalenzrelation nicht mit der Multiplikation von Funktionen verträglich ist.



Es sei eine Teilmenge mit der induzierten Metrik. Betrachte die Relation auf , wobei bedeutet, dass es eine stetige Abbildung

mit und gibt. Zeige, dass dies eine Äquivalenzrelation auf ist.



Es sei eine Menge und eine Äquivalenzrelation auf mit den Äquivalenzklassen . Es sei die Menge aller Äquivalenzklassen. Zeige folgende Aussagen.

  1. Es ist genau dann, wenn ist, und dies gilt genau dann, wenn .
  2. ist eine disjunkte Vereinigung.




Aufgaben zum Abgeben

Aufgabe (4 Punkte)

Wir betrachten für je zwei Teilmengen die symmetrische Differenz

Wir setzen , falls endlich ist. Zeige, dass dadurch eine Äquivalenzrelation auf definiert wird.



Aufgabe (2 Punkte)

Es sei ein Symbolalphabet einer Sprache erster Stufe, die Menge der - Terme und eine - Interpretation. Zeige, dass auf durch

eine Äquivalenzrelation definiert wird.



Aufgabe (4 Punkte)

Es seien nicht identische - Terme. Zeige, dass es ein endliches - Modell mit

gibt.



Aufgabe (3 Punkte)

Man gebe ein Beispiel für eine widerspruchsfreie, unter Ableitungen abgeschlossene Ausdrucksmenge derart, dass für die konstruierte Interpretation nicht gilt.



Aufgabe (4 Punkte)

Es sei eine abzählbare widerspruchsfreie Ausdrucksmenge. Zeige, dass ein erfüllendes Modell mit abzählbar vielen Elementen besitzt.



Aufgabe * (5 Punkte)

Zeige, dass es einen Peano-Halbring mit der Eigenschaft gibt, dass es darin ein Element gibt, das größer als jede natürliche Zahl in (also Zahlen der Form ) ist.

Tipp=Betrache Ausdrücke der Form .


<< | Kurs:Einführung in die mathematische Logik (Osnabrück 2014) | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)