Kurs:Mathematik (Osnabrück 2009-2011)/Teil I/Vorlesung 7

Aus Wikiversity
Zur Navigation springen Zur Suche springen




Folgen in einem angeordneten Körper

Wir beginnen mit einem motivierenden Beispiel.


Beispiel  

Wir wollen die Quadratwurzel einer natürlichen Zahl „berechnen“, sagen wir von . Eine solche Zahl mit der Eigenschaft gibt es nicht innerhalb der rationalen Zahlen, wie aus der eindeutigen Primfaktorzerlegung folgt. In jedem angeordneten Körper gibt es eine , ob es aber ein solches gibt ist eine nichttriviale zusätzliche Eigenschaft von . Wenn es in eine solches gibt, so hat auch diese Eigenschaft. Mehr als zwei Lösungen kann es aber nicht geben, siehe Aufgabe *****, so dass wir nur nach der positiven Lösung suchen müssen.

Obwohl es innerhalb der rationalen Zahlen keine Lösung für die Gleichung gibt, so gibt es doch beliebig gute Approximationen innerhalb der rationalen Zahlen dafür. Beliebig gut heißt dabei, dass der Fehler (oder die Abweichung) unterhalb jede positive Schranke gedrückt werden kann. Das klassische Verfahren, um eine Quadratwurzeln beliebig anzunähern, ist das Heron-Verfahren, das man auch babylonisches Wurzelziehen nennt. Dies ist ein iteratives Verfahren, d.h. die nächste Approximation wird aus den vorausgehenden Approximationen berechnet. Beginnen wir mit als erster Näherung. Wegen

ist zu klein, d.h. es ist , wobei diese Ungleichung (zunächst) nur Sinn ergibt, wenn in existiert. Aus (mit positiv) folgt zunächst und daraus , d.h. . Man hat also die Abschätzungen

wobei rechts eine rationale Zahl steht, wenn links eine rationale Zahl steht. Eine solche Abschätzung vermittelt offenbar eine quantitative Vorstellung darüber, wo liegt, und zwar unabhängig davon, ob zu gehört oder nicht, solange nur dazu gehört. Die Differenz ist ein Maß für die Güte der Approximation.

Beim Startwert ergibt sich, dass die Quadratwurzel von zwischen und liegt. Man nimmt das arithmetische Mittel der beiden Intervallgrenzen, also

Wegen ist dieser Wert zu groß und daher liegt im Intervall . Von diesen Intervallgrenzen nimmt man erneut das arithmetische Mittel und setzt

als nächste Approximation. So fortfahrend erhält man eine immer besser werdende Appproximation von .


Allgemein ergibt sich das folgende Heron-Verfahren.


Beispiel  

Beim Heron-Verfahren zur näherungsweisen Berechnung von einer positiven Zahl geht man iterativ wie folgt vor. Man startet mit einem beliebigen positiven Startwert und berechnet davon das arithmetische Mittel aus und . Dieses Mittel nennt man . Es gilt

D.h. dass mindestens so groß wie ist. Auf wendet man iterativ das gleiche Verfahren an und erhält so usw. Die Definition von lautet also

Nach Konstuktion weiß man, dass in jedem Intervall (für ) liegt, da aus und folgt, dass ist. Bei jedem Schritt gilt

d.h. das Nachfolgerintervall liegt innerhalb des Vorgängerintervalls. Dabei wird bei jedem Schritt die Intervalllänge mindestens halbiert.


Das eben beschriebene Verfahren liefert also zu jeder natürlichen Zahl ein Element in , das eine durch eine gewisse algebraische Eigenschaft charakterisierte Zahl beliebig gut approximiert. Bei vielen technischen Anwendungen genügt es, gewisse Zahlen nur hinreichend genau zu kennen, wobei allerdings die benötigte Güte der Approximation von der technischen Zielsetzung abhängt. Es gibt im Allgemeinen keine Güte, die für jede vorstellbare Anwendung ausreicht, so dass es wichtig ist zu wissen, wie man eine gute Approximation durch eine bessere Approximation ersetzen kann und wie viele Schritte man machen muss, um eine gewünschte Approximation zu erreichen. Dies führt zu den Begriffen Folge und Konvergenz.


Definition (Folge)  

Sei ein angeordneter Körper. Eine Folge in ist eine Abbildung

Eine Folge wird zumeist als , oder einfach nur kurz als geschrieben. Manchmal sind Folgen nicht für alle natürlichen Zahlen definiert, sondern nur für alle natürlichen Zahlen . Alle Begriffe und Aussagen lassen sich dann sinngemäß auch auf diese Situation übertragen. Grundsätzlich gibt es Folgen in jeder Menge (nicht nur in einem angeordneten Körper), für die meisten Eigenschaften, für die man sich im Kontext von Folgen interessiert, braucht man aber eine zusätzliche topologische Struktur, wie sie in einem angeordneten Körper existiert. Dies gilt insbesondere für den folgenden Begriff.


Definition (Konvergenz)  

Es sei eine Folge in einem angeordneten Körper und es sei . Man sagt, dass die Folge gegen konvergiert, wenn folgende Eigenschaft erfüllt ist.

Zu jedem , , gibt es ein derart, dass für alle die Beziehung

gilt. In diesem Fall heißt der Grenzwert oder der Limes der Folge. Dafür schreibt man auch

Wenn die Folge einen Grenzwert besitzt, so sagt man auch, dass sie konvergiert (ohne Bezug auf einen Grenzwert), andernfalls, dass sie divergiert.

Man sollte sich dabei das vorgegebene als eine kleine, aber positive Zahl vorstellen, die eine gewünschte Zielgenauigkeit (oder erlaubten Fehler) ausdrückt. Die natürliche Zahl ist dann die Aufwandszahl, die beschreibt, wie weit man gehen muss, um die gewünschte Zielgenauigkeit zu erreichen, und zwar so zu erreichen, dass alle ab folgenden Glieder innerhalb dieser Zielgenauigkeit bleiben. Konvergenz bedeutet demnach, dass man jede gewünschte Genauigkeit bei hinreichend großem Aufwand auch erreichen kann. Je kleiner die Zielgenauigkeit, also je besser die Approximation sein sollen, desto höher ist im Allgemeinen der Aufwand.

Zu einem und nennt man das Intervall auch die -Umgebung von . Eine Folge, die gegen konvergiert, heißt Nullfolge.


Konvergenz.svg



Lemma  

Es sei ein angeordneter Körper und sei eine Folge in .

Dann besitzt maximal einen Grenzwert.

Beweis  

 Nehmen wir an, dass es zwei verschiedene Grenzwerte , ,

gibt. Dann ist . Wir betrachten . Wegen der Konvergenz gegen gibt es ein mit

und wegen der Konvergenz gegen gibt es ein mit

Beide Bedingungen gelten dann gleichermaßen für . Sei mindestens so groß wie dieses Maximum. Dann ergibt sich aufgrund der Dreiecksungleichung der Widerspruch


Cauchy sequence - example.png



Beispiel  

Eine konstante Folge ist stets konvergent mit dem Grenzwert . Dies folgt direkt daraus, dass man für jedes als Aufwandszahl nehmen kann. Es ist ja

für alle .

Es sei nun ein archimedisch angeordneter Körper. Dann ist die Folge

konvergent mit dem Grenzwert . Sei dazu ein beliebiges , , vorgegeben. Aufgrund des Archimedes Axioms gibt es ein mit . Daraus folgt . Insgesamt gilt damit für alle die Abschätzung




Beschränktheit

Definition  

Es sei ein angeordneter Körper und eine Teilmenge.

  1. Ein Element heißt eine obere Schranke für , wenn gilt für alle .
  2. Ein Element heißt eine untere Schranke für , wenn gilt für alle .
  3. heißt nach oben beschränkt, wenn eine obere Schranke für existiert.
  4. heißt nach unten beschränkt, wenn eine untere Schranke für existiert.
  5. heißt beschränkt, wenn sowohl nach oben als auch nach unten beschränkt ist.
  6. Ein Element heißt das Maximum von , wenn für alle gilt.
  7. Ein Element heißt das Minimum von , wenn für alle gilt.
  8. Eine obere Schranke von heißt das Supremum von , wenn für alle oberen Schranken von gilt.
  9. Eine untere Schranke von heißt das Infimum von , wenn für alle unteren Schranken von gilt.

Obere und untere Schranken muss es nicht geben. Wenn eine obere Schranke ist, so ist auch jede größere Zahl eine obere Schranke. Für das offene Intervall ist das Supremum, aber nicht das Maximum, da nicht dazu gehört. Entsprechend ist das Infimum, aber nicht das Minimum. Beim abgeschlossenen Intervall sind die beiden Grenzen Maximum und Minimum.

All diese Begriffe werden auch für Folgen angewendet, und zwar für die Bildmenge . Für die Folge , , ist das Maximum und das Supremum, ist das Infimum, aber nicht das Minimum.



Lemma  

Es sei ein angeordneter Körper. Wenn eine Folge in konvergent ist,

so ist sie auch beschränkt.

Beweis  

Es sei die konvergente Folge mit dem Limes und es sei . Aufgrund der Konvergenz gibt es ein derart, dass

Dann ist insbesondere

Unterhalb von gibt es nur endlich viele Zahlen, so dass das Maximum

wohldefiniert ist. Daher ist eine obere Schranke und eine untere Schranke für .


Es ist einfach, beschränkte, aber nicht konvergente Folgen anzugeben.


Beispiel  

Es sei ein angeordneter Körper und sei , . Dann ist die alternierende Folge

beschränkt, aber nicht konvergent. Die Beschränktheit folgt direkt aus

Konvergenz liegt aber nicht vor. Nehmen wir an, dass der Grenzwert sei. Dann gilt für positives und jedes ungerade die Beziehung

so dass es Folgenwerte außerhalb dieser -Umgebung gibt. Analog kann man einen negativ angenommen Grenzwert zum Widerspruch führen.




Rechenregeln für Folgen



Lemma  

Es sei ein angeordneter Körper und es seien und konvergente Folgen in . Dann gelten folgende Aussagen.

  1. Die Folge ist konvergent und es gilt
  2. Die Folge ist konvergent und es gilt
  3. Für gilt
  4. Es sei und für alle . Dann ist ebenfalls konvergent mit
  5. Es sei und für alle . Dann ist ebenfalls konvergent mit

Beweis  

(2). Sei vorgegeben. Die konvergente Folge ist nach Lemma 7.8 insbesondere beschränkt und daher existiert ein mit für alle . Sei und . Wir setzen . Aufgrund der Konvergenz gibt es natürliche Zahlen und mit

Diese Abschätzungen gelten dann auch für . Für diese Zahlen gilt daher


(4). Da der Limes der Folge nicht ist, gilt für die Bedingung und damit . Sei vorgegeben. Wegen der Konvergenz von gibt es ein mit

Dann gilt für alle die Abschätzung




Lemma

Es sei ein angeordneter Körper und es seien und konvergente Folgen mit für alle .

Dann ist

Beweis

Siehe Aufgabe 7.9.



Lemma (Quetschkriterium)

Es sei ein angeordneter Körper und es seien und drei Folgen in . Es gelte

und und konvergieren beide gegen den gleichen Grenzwert .

Dann konvergiert auch gegen diesen Grenzwert .

Beweis

Siehe Aufgabe 7.10.



Definition  

Es sei ein angeordneter Körper und sei eine Folge in . Dann heißt die Folge wachsend, wenn ist für alle , und streng wachsend, wenn ist für alle .

Die Folge heißt fallend, wenn ist für alle , und streng fallend, wenn ist für alle .

Als gemeinsamen Begriff für waschsende oder fallende Folgen verwendet man die Bezeichnung monotone Folgen.

Man stelle sich nun eine wachsende Folge vor, die aber dennoch beschränkt ist. Muss eine solche Folge konvergieren? Das hängt vom angeordneten Körper ab! Innerhalb der rationalen Zahlen sind beispielsweise die mit dem Heronverfahren konstruierten Folgen monoton wachsend (wenn man mit einem zu kleinen Startwert anfängt) und auch beschränkt (durch jede rationale Zahl, deren Quadrat größer als ist), sie besitzen aber im Allgemeinen keinen Limes in . Die reellen Zahlen , denen wir uns in der nächsten Vorlesung zuwenden, sind gerade dadurch ausgezeichnet, dass darin jede wachsende, nach oben beschränkte Folge einen Grenzwert besitzt.



<< | Kurs:Mathematik (Osnabrück 2009-2011)/Teil I | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)