Zum Inhalt springen

Endomorphismus/Nilpotent/Einführung/Textabschnitt

Aus Wikiversity


Es sei ein Körper und ein -Vektorraum. Eine lineare Abbildung

heißt nilpotent, wenn es eine natürliche Zahl derart gibt, dass die -te Hintereinanderschaltung

ist.


Eine quadratische Matrix heißt nilpotent, wenn es eine natürliche Zahl derart gibt, dass das -te Matrixprodukt

ist.


Es sei eine obere Dreiecksmatrix, bei der alle Diagonalelemente seien. hat also die Gestalt

Dann ist nilpotent, und zwar bewegt sich mit jedem Potenzieren die -Hauptdiagonale nach rechts oben. Wenn man nämlich beispielsweise das Produkt für die -te Zeile und die -te Spalte mit

ausrechnet, so kommt in den Teilprodukten stets eine vor und das Ergebnis ist .



Ein Spezialfall zu Beispiel ist die Matrix

Eine wichtige Beobachtung dabei ist, dass unter dieser Abbildung auf abgebildet wird, auf und schließlich auf , welches auf abgebildet wird. Die -te Potenz der Matrix bildet auf ab und ist nicht die Nullmatrix, die -te Potenz der Matrix ist die Nullmatrix.



Es sei ein Körper und es sei ein endlichdimensionaler -Vektorraum. Es sei

eine lineare Abbildung. Zu einem Eigenwert besitzt der Hauptraum die Eigenschaft, dass die Einschränkung von auf nilpotent ist.




Es sei ein Körper und ein endlichdimensionaler -Vektorraum. Es sei

eine lineare Abbildung. Dann sind folgende Aussagen äquivalent.

  1. ist nilpotent.
  2. Für jeden Vektor gibt es ein mit
  3. Es gibt eine Basis von und ein mit

    für .

  4. Es gibt ein Erzeugendensystem von und ein mit

    für .

Von (1) nach (2) ist klar. Von (2) nach (3). Es sei eine Basis (oder ein endliches Erzeugendensystem) und es sei mit

gegeben. Dann erfüllt

die Eigenschaft für jeden Erzeuger. Von (3) nach (4) ist klar. Von (4) nach (1). Zu ist

Aufgrund der Linearität von ist

also ist



Es sei ein Körper und es sei ein endlichdimensionaler -Vektorraum. Es sei

eine lineare Abbildung. Dann sind folgende Aussagen äquivalent.

  1. ist nilpotent
  2. Das Minimalpolynom zu ist eine Potenz von .
  3. Das charakteristische Polynom zu ist eine Potenz von .

Die Äquivalenz von (1) und (2) ergibt sich unmittelbar aus den Definitionen, die Äquivalenz von (2) und (3) ergibt sich aus Fakt.



Es sei ein Körper und es sei ein endlichdimensionaler -Vektorraum. Es sei

eine nilpotente lineare Abbildung.

Dann ist trigonalisierbar,

und zwar gibt es eine Basis, bezüglich der durch eine obere Dreiecksmatrix beschrieben wird, in der alle Diagonaleinträge sind.

Dies folgt direkt aus Fakt und Fakt.