Kurs:Analysis (Osnabrück 2013-2015)/Teil III/Arbeitsblatt 62

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Aufwärmaufgaben

Aufgabe

Sei ein metrischer Raum. Zeige, dass in die sogenannte Hausdorff-Eigenschaft gilt, d.h. zu je zwei verschiedenen Punkten und gibt es offene Mengen und mit


Aufgabe *

Zeige, dass in einem Hausdorff-Raum jeder Punkt abgeschlossen ist.


Aufgabe

Es sei ein topologischer Raum mit einer abzählbaren Basis. Zeige, dass dann auch jeder Unterraum mit der induzierten Topologie eine abzählbare Basis besitzt.


Aufgabe

Es sei ein topologischer Raum mit einer abzählbaren Basis. Zeige, dass es zu jeder Überdeckung mit offenen Mengen eine abzählbare Teilüberdeckung gibt.


Aufgabe *

Es sei ein topologischer Raum und sei die davon erzeugte Mengenalgebra. Zeige, dass diese genau aus allen endlichen Vereinigungen

mit offenen Mengen und abgeschlossenen Mengen besteht.


Aufgabe

Es sei ein Maßraum. Zeige, dass die Menge der Nullmengen von ein Mengen-Präring ist.


Aufgabe

Es sei ein Maßraum. Zeige, dass die Mengen

einen Mengen-Präring, aber im Allgemeinen keine Mengen-Algebra bilden.


Aufgabe *

Es sei ein Messraum und und seien Maße darauf.

a) Ist die durch

für definierte Abbildung ein Maß?

b) Ist die durch

für definierte Abbildung ein Maß?


Aufgabe

Es sei ein Maßraum und . Zeige, dass durch

ein Maß auf definiert ist.[1] Diskutiere insbesondere die Teilmengen mit .


Aufgabe

Es sei ein Messraum. Wir nennen ein Maß auf explosiv, wenn es lediglich die Werte und annimmt.

a) Zeige, dass (für ) durch

ein Maß definiert ist.

b) Es sei ein Maß auf . Zeige, dass durch

ebenfalls ein Maß definiert ist.


Aufgabe

Bestimme die Belegungsfunktion zu einem Dirac-Maß.


Aufgabe

Man mache sich klar, dass die Maßtheorie auf den natürlichen Zahlen „nahezu“ äquivalent ist zur Theorie der Reihen mit nichtnegativen reellen Summanden. Warum nur nahezu? Welches maßtheoretische Konzept korrespondiert dabei zur Konvergenz der Reihe?


Aufgabe

Der Messraum sei mit dem Maß versehen, bei der die Zahl den Wert erhält. Bestimme für möglichst viele Teilmengen den Wert .




Aufgaben zum Abgeben

Aufgabe (4 Punkte)

Es sei ein Messraum und sei

eine Folge von messbaren Funktionen. Zeige, dass

messbar ist.


Aufgabe (3 Punkte)

Zeige, dass es eine abzählbare Familie von offenen Bällen im gibt, die eine Basis der Topologie bilden.


Aufgabe (4 Punkte)

Es sei ein Hausdorff-Raum und es seien zwei disjunkte endliche Teilmengen. Zeige, dass es offene Mengen gibt mit , und .


Aufgabe (4 Punkte)

Zeige, dass es auf jedem endlichdimensionalen reellen Vektorraum ein wohldefiniertes Konzept von Borel-Mengen gibt.


Aufgabe (7 Punkte)

Zeige, dass die Menge der stetigen wachsenden Funktionen

mit , mit und überabzählbar ist.




Fußnoten
  1. Dieses Maß nennt man das mit umskalierte Maß.


<< | Kurs:Analysis (Osnabrück 2013-2015)/Teil III | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)