Kurs:Analysis (Osnabrück 2014-2016)/Teil I/Arbeitsblatt 30

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Übungsaufgaben

Aufgabe

Bestätige die in Beispiel 30.6, Beispiel 30.7 und Beispiel 30.8 gefundenen Lösungskurven der Differentialgleichungen

durch Ableiten.


Aufgabe


Aufgabe

Bestimme alle Lösungen der Differentialgleichung

mit dem Lösungsansatz für getrennte Variablen.


Aufgabe

Bestimme alle Lösungen der Differentialgleichung

mit dem Lösungsansatz für getrennte Variablen.


Aufgabe

Bestimme alle Lösungen der Differentialgleichung

mit dem Lösungsansatz für getrennte Variablen.


Aufgabe

Löse die Differentialgleichung

mit dem Lösungsansatz für getrennte Variablen.


Aufgabe *

Finde eine Lösung für die gewöhnliche Differentialgleichung

mit und .


Aufgabe *

Bestimme die Lösungen der Differentialgleichung ()

mit dem Lösungsansatz für getrennte Variablen. Was ist der Definitionsbereich der Lösungen?


Aufgabe *

a) Bestimme eine Lösung der Differentialgleichung

mit dem Lösungsansatz für getrennte Variablen.

b) Bestimme die Lösung des Anfangswertproblems


Aufgabe

Betrachte die in Beispiel 30.9 gefundenen Lösungen

der logistischen Differentialgleichung.

a) Skizziere diese Funktion (für geeignete und ).

b) Bestimme die Grenzwerte für und .

c) Studiere das Monotonieverhalten dieser Funktionen.

d) Für welche besitzt die Ableitung von ein Maximum (für die Funktion selbst bedeutet dies einen Wendepunkt, man spricht auch von einem Vitalitätsknick).

e) Über welche Symmetrien verfügen diese Funktionen?




Aufgaben zum Abgeben

Aufgabe (3 Punkte)

Zeige, dass eine Differentialgleichung der Form

mit einer stetigen Funktion

auf einem Intervall die Lösungen

besitzt, wobei eine Stammfunktion zu mit sei.


Aufgabe (3 Punkte)

Bestimme alle Lösungen der Differentialgleichung

mit dem Lösungsansatz für getrennte Variablen.


Aufgabe (4 Punkte)

Bestimme alle Lösungen der Differentialgleichung

mit dem Lösungsansatz für getrennte Variablen.


Aufgabe (3 Punkte)

Bestimme alle Lösungen der Differentialgleichung

mit dem Lösungsansatz für getrennte Variablen. Welche Lösung hat das Anfangswertproblem ?


Aufgabe (5 Punkte)

Bestimme alle Lösungen der Differentialgleichung

mit

a) dem Lösungsansatz für inhomogene lineare Differentialgleichungen,

b) dem Lösungsansatz für getrennte Variablen.



<< | Kurs:Analysis (Osnabrück 2014-2016)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)