Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Arbeitsblatt 8/kontrolle

Aus Wikiversity



Aufwärmaufgaben

Aufgabe * Aufgabe 8.1 ändern

Es sei ein Körper und ein - Vektorraum mit endlicher Dimension . Es seien Vektoren in gegeben. Zeige, dass die folgenden Eigenschaften äquivalent sind.

  1. bilden eine Basis von .
  2. bilden ein Erzeugendensystem von .
  3. sind linear unabhängig.


Aufgabe Referenznummer erstellen

Es sei ein Körper und sei der Polynomring über . Sei . Zeige, dass die Menge aller Polynome vom Grad ein endlichdimensionaler Untervektorraum von ist. Was ist seine Dimension?


Aufgabe Referenznummer erstellen

Zeige, dass die Menge aller reellen Polynome vom Grad , für die und Nullstellen sind, ein endlichdimensionaler Untervektorraum in ist. Bestimme die Dimension von diesem Vektorraum.


Aufgabe * Referenznummer erstellen

Es sei ein Körper und es seien und endlichdimensionale - Vektorräume mit und . Welche Dimension besitzt der Produktraum ?


Aufgabe Referenznummer erstellen

Es sei ein endlichdimensionaler Vektorraum über den komplexen Zahlen, und sei eine Basis von . Zeige, dass die Vektorenfamilie

eine Basis von , aufgefasst als reeller Vektorraum, ist.


Aufgabe Referenznummer erstellen

Es sei die Standardbasis im gegeben und die drei Vektoren

Zeige, dass diese Vektoren linear unabhängig sind und ergänze sie mit einem geeigneten Standardvektor gemäß Satz 8.2 zu einer Basis. Kann man jeden Standardvektor nehmen?


Aufgabe * Referenznummer erstellen

Bestimme die Übergangsmatrizen und für die Standardbasis und die durch die Vektoren

gegebene Basis im .


Aufgabe Referenznummer erstellen

Bestimme die Übergangsmatrizen und für die Standardbasis und die durch die Vektoren

gegebene Basis im .


Aufgabe Referenznummer erstellen

Wir betrachten die Vektorenfamilien

im .

a) Zeige, dass sowohl als auch eine Basis des ist.

b) Es sei derjenige Punkt, der bezüglich der Basis die Koordinaten besitze. Welche Koordinaten besitzt der Punkt bezüglich der Basis ?

c) Bestimme die Übergangsmatrix, die den Basiswechsel von nach beschreibt.




Aufgaben zum Abgeben

Aufgabe (4 Punkte)Referenznummer erstellen

Zeige, dass die Menge aller reellen Polynome vom Grad , für die , und Nullstellen sind, ein endlichdimensionaler Untervektorraum in ist. Bestimme die Dimension von diesem Vektorraum.


Aufgabe (2 Punkte)Referenznummer erstellen

Es sei ein Körper und ein - Vektorraum. Es sei eine Familie von Vektoren in und sei

der davon aufgespannte Untervektorraum. Zeige, dass die Familie genau dann linear unabhängig ist, wenn die Dimension von gleich ist.


Aufgabe (4 Punkte)Referenznummer erstellen

Bestimme die Übergangsmatrizen und für die Standardbasis und die durch die Vektoren

gegebene Basis im .


Aufgabe (6 (3+1+2) Punkte)Referenznummer erstellen

Wir betrachten die Vektorenfamilien

im .

a) Zeige, dass sowohl als auch eine Basis des ist.

b) Es sei derjenige Punkt, der bezüglich der Basis die Koordinaten besitze. Welche Koordinaten besitzt der Punkt bezüglich der Basis ?

c) Bestimme die Übergangsmatrix, die den Basiswechsel von nach beschreibt.




<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I | >>

PDF-Version dieses Arbeitsblattes (PDF englisch)

Zur Vorlesung (PDF)