Dachprodukt/Universelle Eigenschaft/Dimension/Textabschnitt

Aus Wikiversity

Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes.


Satz  

Es sei ein Körper, ein -Vektorraum und . Es sei

eine alternierende multilineare Abbildung in einen weiteren -Vektorraum .

Dann gibt es eine eindeutig bestimmte lineare Abbildung

derart, dass das Diagramm

kommutiert.

Beweis  

Wir verwenden die Notation aus Fakt. Durch die Zuordnung

wird nach Fakt eine -lineare Abbildung

definiert. Da multilinear und alternierend ist, wird unter der Untervektorraum auf abgebildet. Nach Fakt gibt es daher eine -lineare Abbildung

die mit verträglich ist.
Die Eindeutigkeit ergibt sich daraus, dass die ein Erzeugendensystem von bilden und diese auf abgebildet werden müssen.


Es bezeichne die Menge aller alternierenden Abbildungen von nach . Diese Menge kann man mit einer natürlichen -Vektorraumstruktur versehen.


Korollar  

Es sei ein Körper, ein -Vektorraum und .

Dann gibt es eine natürliche Isomorphie

Beweis  

Die Abbildung ist einfach die Verknüpfung , wobei die kanonische Abbildung bezeichnet. Die Linearität der Zuordnung ergibt sich aus den linearen Strukturen des Dualraumes und des Raumes der alternierenden Formen. Die Bijektivität der Abbildung folgt aus Fakt, angewendet auf .



Satz  

Es sei ein Körper und ein endlichdimensionaler -Vektorraum der Dimension . Es sei eine Basis von und es sei .

Dann bilden die Dachprodukte

eine Basis von .

Beweis  

Wir zeigen zuerst, dass ein Erzeugendensystem vorliegt.  Da die Elemente der Form nach Fakt  (1) ein Erzeugendensystem von bilden, genügt es zu zeigen, dass man diese durch die angegebenen Elemente darstellen kann. Für jedes gibt es eine Darstellung , daher kann man nach Fakt  (4) die als Linearkombinationen von Dachprodukten der Basiselemente darstellen, wobei allerdings jede Reihenfolge vorkommen kann. Es sei also gegeben mit . Durch Vertauschen von benachbarten Vektoren kann man nach Fakt  (3) (unter Inkaufnahme eines anderen Vorzeichens) erreichen, dass die Indizes (nicht notwendigerweise streng) aufsteigend geordnet sind. Wenn sich ein Index wiederholt, so ist nach Fakt  (2) das Dachprodukt . Also wiederholt sich kein Index und diese Dachprodukte sind in der gewünschten Form.

Zum Nachweis der linearen Unabhängigkeit zeigen wir unter Verwendung von Fakt, dass es zu jeder -elementigen Teilmenge (mit ) eine -lineare Abbildung

gibt, die nicht auf abbildet, aber alle anderen in Frage stehenden Dachprodukte auf abbildet. Dazu genügt es nach Fakt, eine alternierende multilineare Abbildung

anzugeben mit , aber mit für jedes andere aufsteigende Indextupel. Es sei der von den , , erzeugte Untervektorraum von und der Restklassenraum. Dann bilden die Bilder der , , eine Basis von , und die Bilder von allen anderen -Teilmengen der gegebenen Basis bilden dort keine Basis, da mindestens ein Element davon auf geht. Wir betrachten nun die zusammengesetzte Abbildung

Diese Abbildung ist nach Fakt multilinear und nach Fakt alternierend. Nach Fakt ist genau dann, wenn die Bilder von in keine Basis bilden.


Bei mit der Standardbasis nennt man die  mit die Standardbasis von .



Korollar  

Es sei ein Körper und ein endlichdimensionaler -Vektorraum der Dimension .

Dann besitzt das -te äußere Produkt die Dimension

Beweis  

Dies folgt direkt aus Fakt und Fakt.

Insbesondere ist die äußere Potenz für eindimensional (es ist ) und für -dimensional (es ist ). Für ist eindimensional, und die Determinante induziert (nach einer Identifizierung von mit ) einen Isomorphismus

Für sind die äußeren Produkte der Nullraum und besitzen die Dimension .

Wir erweitern die oben gezeigte natürliche Isomorphie zu einer natürlichen Isomorphie



Satz  

Es sei ein Körper und ein dimensionaler Vektorraum. Es sei .

Dann gibt es eine natürliche Isomorphie

mit

(mit und ).

Beweis  

Wir betrachten die Abbildung (mit Faktoren)

mit

Für fixierte ist die Abbildung rechts multilinear und alternierend, wie eine direkte Überprüfung unter Verwendung der Determinantenregeln zeigt. Daher entspricht diese nach Fakt einem Element in . Insgesamt liegt also eine Abbildung

vor. Eine direkte Prüfung zeigt, dass die Gesamtzuordung ebenfalls multilinear und alternierend ist. Aufgrund der universellen Eigenschaft gibt es daher eine lineare Abbildung

Diese müssen wir als Isomorphismus nachweisen. Es sei dazu eine Basis von mit der zugehörigen Dualbasis . Nach Fakt bilden die

eine Basis von . Ebenso bilden die

eine Basis von mit zugehöriger Dualbasis . Wir zeigen, dass unter auf abgebildet wird. Für ist

Bei gibt es ein , das von allen verschieden ist. Daher ist die -te Zeile der Matrix und somit ist die Determinante . Wenn dagegen die Indexmengen übereinstimmen, so ergibt sich die Einheitsmatrix mit der Determinante . Diese Wirkungsweise stimmt mit der von überein.