Kurs:Analysis (Osnabrück 2014-2016)/Teil III/Arbeitsblatt 79

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Aufwärmaufgaben

Aufgabe

Zeige, dass das Produkt von zwei differenzierbaren Mannigfaltigkeiten und selbst wieder eine differenzierbare Mannigfaltigkeit ist.


Aufgabe

Es seien und abgeschlossene Untermannigfaltigkeiten. Zeige, dass ihr Produkt eine abgeschlossene Untermannigfaltigkeit von ist.


Aufgabe

Beschreibe die Karten auf dem Torus , die von den stereographischen Projektionen herrühren.


Aufgabe

Zeige, dass diffeomorph zu einem Produkt aus eindimensionalen Mannigfaltigkeiten ist.


Aufgabe

Zeige, dass das Produkt von zwei wegzusammenhängenden differenzierbaren Mannigfaltigkeiten und wieder wegzusammenhängend ist.


Aufgabe

Es sei eine differenzierbare Mannigfaltigkeit und

die Diagonalabbildung in das Produkt . Zeige, dass die Diagonale eine abgeschlossene Untermannigfaltigkeit ist.


Aufgabe

Es sei eine differenzierbare Mannigfaltigkeit. Zeige, dass die Vertauschungsabbildung

ein Diffeomorphismus ist.


Aufgabe

Beschreibe den Torus als Rotationsmenge im .


Aufgabe *

Sei und betrachte die Abbildung

Bestimme die regulären Punkte der Abbildung und die Gestalt der Faser über . Wie ändert sich die Gestalt beim Übergang von zu .


Aufgabe

Definiere die Abbildung

die zu einem Winkelpaar die erste Komponente als Äquatorpunkt interpretiert und von dort aus mit der zweiten Komponente auf dem Großkreis Richtung Norden wandert. Ist die Abbildung differenzierbar? Wie sehen die Fasern der Abbildung aus?


Aufgabe

Man gebe ein heuristisches Argument, dass die Einheitssphäre und der Torus nicht homöomorph sind.


Aufgabe

Zu welcher differenzierbaren Mannigfaltigkeit ist , also der Torus ohne die Diagonale, diffeomorph?


Aufgabe *

Sei ein Torus. Man gebe eine surjektive differenzierbare Abbildung

an derart, dass auch die Tangentialabbildung

in jedem Punkt surjektiv ist.


Aufgabe

Betrachte die Kreislinie . Definiere eine differenzierbare Gruppenstruktur auf , also ein neutrales Element , eine differenzierbare Abbildung

und eine differenzierbare Abbildung

derart, dass mit diesen Daten zu einer kommutativen Gruppe wird.


Aufgabe

Betrachte die allgemeine lineare Gruppe als offene Untermannigfaltigkeit des . Definiere eine differenzierbare Gruppenstruktur auf , also ein neutrales Element , eine differenzierbare Abbildung

und eine differenzierbare Abbildung

derart, dass mit diesen Daten zu einer Gruppe wird.


Aufgabe

Zeige, dass die Abbildung

ein fixpunktfreier Diffeomorphismus ist, der zu sich selbst invers ist.


Aufgabe

Es sei ein Körper, ein -Vektorraum und eine Menge mit einer Verknüpfung

und einer Abbildung

Es sei

eine surjektive Abbildung mit

für alle und . Zeige, dass ein -Vektorraum ist.


Aufgabe

Sei ein Körper und ein -Vektorraum. Zeige die Gleichheit .


Aufgabe

Sei ein Körper und ein -dimensionaler -Vektorraum. Es sei . Zeige .




Aufgaben zum Abgeben

Aufgabe (5 Punkte)

Sei und sei

Zeige, dass die Abbildung

eine Bijektion ist.


Aufgabe (6 Punkte)

Sei ein Torus und seien zwei Punkte. Zeige, dass es eine gemeinsame Kartenumgebung derart gibt, dass die Kartenabbildung

eine Homöomorphie mit ergibt.


Aufgabe (4 Punkte)

Drücke das Dachprodukt

im als Linearkombination der Dachprodukte , und aus.




Aufgabe zum Hochladen

Aufgabe (10 Punkte)

Erstelle eine Animation, die Aufgabe 79.9 illustriert.



<< | Kurs:Analysis (Osnabrück 2014-2016)/Teil III | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)