Kurs:Elemente der Algebra (Osnabrück 2015)/Arbeitsblatt 10/kontrolle

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Übungsaufgaben

Aufgabe Aufgabe 10.1 ändern

Beweise Lemma 10.6.


Aufgabe Referenznummer erstellen

Sei eine (multiplikativ geschriebene) kommutative Gruppe und sei . Zeige, dass das Potenzieren

ein Gruppenhomomorphismus ist.


Aufgabe Referenznummer erstellen

Es sei eine additiv geschriebene kommutative Gruppe. Zeige, dass die Negation, also die Abbildung

ein Gruppenisomorphismus ist.


Aufgabe * Referenznummer erstellen

Es sei eine kommutative Gruppe und

ein surjektiver Gruppenhomomorphismus. Zeige, dass ebenfalls kommutativ ist.


Aufgabe * Referenznummer erstellen

Bestimme, ob die durch die Gaußklammer gegebene Abbildung

ein Gruppenhomomorphismus ist oder nicht.


Aufgabe * Referenznummer erstellen

Es sei ein kommutativer Ring und . Zeige, dass die Abbildung

ein Gruppenhomomorphismus ist. Beschreibe das Bild und den Kern dieser Abbildung.


Aufgabe Referenznummer erstellen

a) Für welche reellen Polynome ist die zugehörige polynomiale Abbildung

ein Gruppenhomomorphismus?

b) Für welche reellen Polynome ist allenfalls eine Nullstelle und die zugehörige polynomiale Abbildung

ein Gruppenhomomorphismus?


Aufgabe Referenznummer erstellen

Sei . Wir betrachten

mit der in Aufgabe 1.19 beschriebenen Addition. Zeige, dass die Abbildung

kein Gruppenhomomorphismus ist.


Wir erinnern an den Begriff einer Matrix.


Sei ein kommutativer Ring. Unter einer Matrix (über ) versteht man einen Ausdruck der Form

wobei die Einträge aus sind.


Aufgabe Referenznummer erstellen

Es sei ein kommutativer Ring und

eine Matrix über . Zeige, dass die Matrix einen Gruppenhomomorphismus

definiert, indem man

anwendet, wobei

ist.


Chocolates.jpg

Aufgabe Referenznummer erstellen

In einer Kekspackung befinden sich Schokokekse, Waffelröllchen, Mandelsterne und Nougatringe. Die Kalorien, der Vitamin C-Gehalt und der Anteil an linksdrehenden Fettsäuren werden durch folgende Tabelle (in geeigneten Maßeinheiten) wiedergegeben:

Sorte Kalorien Vitamin C Fett
Schokokeks 10 5 3
Waffelröllchen 8 7 6
Mandelstern 7 3 1
Nougatring 12 0 5

a) Beschreibe mit einer Matrix die Abbildung, die zu einem Verzehrtupel das Aufnahmetupel berechnet.

b) Heinz isst Schokokekse. Berechne seine Vitaminaufnahme.

c) Ludmilla isst Nougatringe und Waffelröllchen. Berechne ihre Gesamtaufnahme an Nährstoffen.

d) Peter isst Mandelsterne mehr und Schokokekse weniger als Fritz. Bestimme die Differenz ihrer Kalorienaufnahme.


Matrizen werden miteinander multipliziert, indem jede Zeile der linken Matrix mit jeder Spalte der rechten Matrix gemäß der Merkregel

multipliziert wird (insbesondere muss die Spaltenanzahl der linken Matrix mit der Zeilenanzahl der rechten Matrix übereinstimmen) und das Ergebnis an die entsprechende Stelle gesetzt wird.

Aufgabe Referenznummer erstellen

Berechne das Matrizenprodukt


Aufgabe Referenznummer erstellen

Es sei ein Körper und sei

die Menge aller invertierbaren -Matrizen.

a) Zeige (ohne Bezug zur Determinante), dass mit der Matrizenmultiplikation eine Gruppe bildet.

b) Zeige (ohne Bezug zur Determinante), dass die Abbildung

ein Gruppenhomomorphismus ist.


Aufgabe Referenznummer erstellen

Es sei eine endliche Menge und eine Teilmenge, und es seien und die zugehörigen Permutationsgruppen (also die Menge aller bijektiven Abbildungen auf , siehe ..) Zeige, dass durch

mit

ein injektiver Gruppenhomomorphismus gegeben ist.


Aufgabe Referenznummer erstellen

Es sei eine Gruppe und . Zeige, dass die Abbildung

eine Gruppenautomorphismus ist.

Die Automorphismen der vorstehenden Aufgabe nennt man auch innere Automorphismen.

Aufgabe Referenznummer erstellen

Sei eine Gruppe und sei ein Element und sei

die Multiplikation mit . Zeige, dass bijektiv ist, und dass genau dann ein Gruppenhomomorphismus ist, wenn ist.




Aufgaben zum Abgeben

Aufgabe (3 (1+2) Punkte)Referenznummer erstellen

Es seien Gruppen.

a) Definiere eine Gruppenstruktur auf dem Produkt

b) Es sei eine weitere Gruppe. Zeige, dass eine Abbildung

genau dann ein Gruppenhomomorphismus ist, wenn alle Komponenten Gruppenhomomorphismen sind.


Aufgabe (4 Punkte)Referenznummer erstellen

Bestimme die Gruppenhomomorphismen von nach .


Die folgende Aufgabe knüpft an Aufgabe 1.20 an. Zu einer reellen Zahl bezeichnet die größte ganze Zahl, die kleiner oder gleich ist.

Aufgabe (3 Punkte)Referenznummer erstellen

Wir betrachten

mit der in Aufgabe 1.17 definierten Verknüpfung, die nach Aufgabe 1.20 eine Gruppe ist. Zeige, dass die Abbildung

ein Gruppenhomomorphismus ist.


Aufgabe (2 Punkte)Referenznummer erstellen

Bestimme für jedes den Kern des Potenzierens


Aufgabe (1 Punkt)Referenznummer erstellen

Zeige, dass es keinen Gruppenhomomorphismus

in eine Gruppe mit der Eigenschaft gibt, dass genau dann irrational ist, wenn ist.



<< | Kurs:Elemente der Algebra (Osnabrück 2015) | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)