Zum Inhalt springen

Kurs:Analysis/Teil I/1/Klausur mit Lösungen

Aus Wikiversity


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Punkte 3 3 4 1 3 7 8 3 4 5 4 4 2 8 5 64




Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Das Bild einer Abbildung
  2. Eine Cauchy-Folge in einem angeordneten Körper .
  3. Die Gaußklammer zu einem Element in einem archimedisch angeordneten Körper .
  4. Die Differenzierbarkeit in einem Punkt einer Abbildung .
  5. Eine Stammfunktion einer Abbildung auf einer offenen Menge .
  6. Die Lösung zu einer gewöhnlichen Differentialgleichung

    wobei

    eine Funktion auf einer offenen Teilmenge ist.


Lösung

  1. Das Bild von ist die Menge
  2. Eine Folge in heißt Cauchy-Folge, wenn folgende Bedingung erfüllt ist: Zu jedem , , gibt es ein derart, dass für alle die Beziehung

    gilt.

  3. Die Gaußklammer ist die größte ganze Zahl .
  4. Man sagt, dass differenzierbar in ist, wenn der Limes

    existiert.

  5. Eine Funktion

    heißt Stammfunktion zu , wenn auf differenzierbar ist und für alle gilt.

  6. Unter einer Lösung der Differentialgleichung versteht man eine Funktion

    auf einem mehrpunktigen Intervall , die folgende Eigenschaften erfüllt.

    1. Es ist für alle .
    2. Die Funktion ist differenzierbar.
    3. Es ist für alle .


Aufgabe (3 Punkte)

Formuliere die folgenden Sätze.

  1. Das Leibnizkriterium für alternierende Reihen.
  2. Das Additionstheorem für den Sinus.
  3. Der Hauptsatz der Infinitesimalrechnung für eine stetige Funktion
    auf einem reellen Intervall .


Lösung

  1. Es sei eine fallende Nullfolge von nichtnegativen reellen Zahlen. Dann konvergiert die Reihe .
  2. Für gilt
  3. Satzantwort Für einen beliebigen Punkt ist die Integralfunktion

    differenzierbar und es gilt

    für alle

    .


Aufgabe (4 Punkte)

Es seien reelle Zahlen. Zeige, dass

genau dann gilt, wenn es ein mit gibt.


Lösung

Es sei . Da ganze Zahlen sind, ist ganzzahlig. Damit gilt

Es sei nun mit . Aus der definierenden Beziehung

folgt

daher muss

sein. Somit ist


Aufgabe (1 Punkt)

Für die Zahl soll eine rationale Approximation gefunden werden, die vom wahren Wert um höchstens -stel abweicht. Wie gut muss eine Approximation für sein, dass man daraus eine solche gewünschte Approximation erhalten kann?


Lösung

Man braucht eine rationale Approximation von mit einem Fehler von höchstens .


Aufgabe (3 Punkte)

Entscheide, ob die reelle Folge

(mit ) in konvergiert und bestimme gegebenenfalls den Grenzwert.


Lösung

Wir erweitern mit und erhalten

Folgen der Form , , konvergieren (vergleiche Aufgabe 7.22 (Analysis (Osnabrück 2021-2023))) gegen , nach den Rechengesetzen für konvergente Folgen konvergiert diese Folge also gegen .


Aufgabe (7 Punkte)

Beweise das Folgenkriterium für die Stetigkeit einer Funktion in einem Punkt .


Lösung

Es bezeichne (1) die Stetigkeit von im Punkt und (2) die Eigenschaft, dass für jede gegen konvergente Folge die Bildfolge gegen konvergiert. Wir müssen die Äquivalenz von (1) und (2) zeigen.

Es sei (1) erfüllt und sei eine Folge in , die gegen konvergiert. Wir müssen zeigen, dass

ist. Dazu sei vorgegeben. Wegen (1) gibt es ein mit der angegebenen Abschätzungseigenschaft und wegen der Konvergenz von gegen gibt es eine natürliche Zahl derart, dass für alle die Abschätzung

gilt. Nach der Wahl von ist dann

sodass die Bildfolge gegen konvergiert.
Es sei (2) erfüllt.  Wir nehmen an, dass nicht stetig ist. Dann gibt es ein derart, dass es für alle Elemente gibt, deren Abstand zu maximal gleich ist, deren Wert unter der Abbildung aber zu einen Abstand besitzt, der größer als ist. Dies gilt dann insbesondere für die Stammbrüche , . D.h. für jede natürliche Zahl gibt es ein mit

Diese so konstruierte Folge konvergiert gegen , aber die Bildfolge konvergiert nicht gegen , da der Abstand der Bildfolgenglieder zu zumindest ist. Dies ist ein Widerspruch zu (2).


Aufgabe (8 Punkte)

Zeige, dass es stetige Funktionen

mit derart gibt, dass für alle weder noch die Nullfunktion ist.


Lösung

Wir betrachten die Zerlegung von in die unendlich vielen halboffenen Intervalle für und . Auf , , definieren wir die stetige Funktion durch

Diese Funktion hat an den Intervallgrenzen den Wert . Die Ableitung ist

das Maximum liegt also im arithmetischen Mittel der Intervallgrenzen vor und besitzt den Wert

Mit Hilfe dieser Funktionen definieren wir

und

Diese Funktionen sind stetig: Dies ist im Innern der Intervalle klar; an den Intervallgrenzen liegt stets der Wert vor; für den Nullpunkt ergibt sich die Stetigkeit, da die Funktionen auf durch beschränkt sind. Offenbar ist und für jedes sind weder noch die Nullfunktion.


Aufgabe (3 Punkte)

Beweise den Satz über die Konvergenz der Exponentialreihe.


Lösung

Für ist die Aussage richtig. Andernfalls betrachten wir den Quotienten

Dies ist für kleiner als . Aus dem Quotientenkriterium folgt daher die Konvergenz.


Aufgabe (4 Punkte)

Wir betrachten das Polynom

Bestimme die -Koordinaten sämtlicher Schnittpunkte der Tangente an im Punkt mit dem Graphen von .


Lösung

Es ist

und

Die Tangente ist also der Graph der Funktion . Wir müssen sämtliche Punkte mit bestimmen, wobei der Punkt dazugehört. Dazu betrachten wir

Polynomdivision durch ergibt

Die Nullstellen von sind


Aufgabe (5 Punkte)

Beweise den Satz über die Ableitung in einem lokalen Extremum.


Lösung

Wir können annehmen, dass ein lokales Maximum in besitzt. Es gibt also ein mit für alle . Es sei eine Folge mit , die gegen („von unten“) konvergiere. Dann ist und und somit ist der Differenzenquotient

was sich dann nach Lemma 6.3 (Analysis (Osnabrück 2021-2023)) auf den Limes, also den Differentialquotienten, überträgt. Also ist . Für eine Folge mit gilt andererseits

Daher ist auch und somit ist insgesamt .


Aufgabe (4 Punkte)

Bestimme das Taylor-Polynom der Funktion im Entwicklungspunkt der Ordnung .


Lösung

Die erste Ableitung ist

Die zweite Ableitung ist

Die dritte Ableitung ist

Die vierte Ableitung ist

Das Taylor-Polynom vom Grad ist demnach

bzw.


Aufgabe (4 Punkte)

Die beiden lokalen Extrema der Funktion

definieren ein achsenparalleles Rechteck, das vom Funktionsgraphen in zwei Bereiche zerlegt wird. Bestimme deren Flächeninhalte.


Lösung

Es ist

Die Ableitung hat also bei und bei eine Nullstelle. Wegen liegt bei ein lokales Maximum mit dem Wert und bei ein lokales Minimum mit dem Wert vor. Der Flächeninhalt des Rechtecks ist . Der Flächeninhalt des Teilbereichs des Rechteckes unterhalb des Graphen ist

Der Flächeninhalt des Teilbereichs des Rechteckes oberhalb des Graphen ist ebenfalls .


Aufgabe (2 Punkte)

Berechne das bestimmte Integral zur Funktion

über .


Lösung

Eine Stammfunktion ist

Daher ist das bestimmte Integral gleich


Aufgabe (8 (4+1+3) Punkte)

a) Bestimme die reelle Partialbruchzerlegung von

b) Bestimme eine Stammfunktion von

c) Bestimme eine Stammfunktion von


Lösung

Es ist

Damit liegt die Faktorzerlegung des Nenners vor, sodass die Partialbruchzerlegung die Gestalt

mit reellen Zahlen besitzt. Multiplikation mit dem Hauptnenner ergibt

Einsetzen von ergibt , also .

Einsetzen von ergibt , also .

Einsetzen von ergibt , also ist , also .

Einsetzen von ergibt

Also ist und daher . Die Partialbruchzerlegung ist also

b) Eine Stammfunktion von

ist

c) Es ist

Wir wenden die Standardsubstitution an und erhalten

Nach Teil b) ist

eine Stammfunktion von .


Aufgabe (5 (3+2) Punkte)

a) Bestimme eine Lösung der Differentialgleichung

mit dem Lösungsansatz für getrennte Variablen.

b) Bestimme die Lösung des Anfangswertproblems


Lösung

a) Wir setzen und . Eine Stammfunktion von ist und eine Stammfunktion von ist . Die Umkehrfunktion von ist

Daher ist

eine Lösung der Differentialgleichung.

b) Wir machen den Ansatz mit der Umkehrfunktion

was zur Lösung(sschar) führt. Aus

folgt . Also ist

die Lösung des Anfangswertproblems.