Kurs:Analysis (Osnabrück 2014-2016)/Teil II/Arbeitsblatt 33/kontrolle

Aus Wikiversity
Zur Navigation springen Zur Suche springen




Übungsaufgaben

Aufgabe * Referenznummer erstellen

Es seien und zwei Punkte im . Bestimme den Abstand zwischen diesen beiden Punkten in

a) der euklidischen Metrik,

b) der Summenmetrik,

c) der Maximumsmetrik.

d) Vergleiche diese verschiedenen Abstände der Größe nach.


Aufgabe Referenznummer erstellen

Zeige, dass die Summenmetrik im eine Metrik ist.


Aufgabe Referenznummer erstellen

Zeige, dass die Maximumsmetrik im eine Metrik ist.


Aufgabe Referenznummer erstellen

Es sei die Parabel, also der Graph der Quadratfunktion

Entscheide, ob auf durch

bzw. durch

eine Metrik definiert wird.


Aufgabe Referenznummer erstellen

Es sei

der Einheitskreis. Zeige, dass man auf eine Metrik definieren kann, indem man () als den positiven Winkel zwischen den zugehörigen Strahlen durch den Nullpunkt ansetzt.


Aufgabe Referenznummer erstellen

Es sei

eine stetige konkave Funktion mit und für und sei

eine Metrik. Zeige, dass dann auch eine Metrik ist.


Aufgabe Aufgabe 33.7 ändern

Sei ein metrischer Raum. Zeige, dass folgende Eigenschaften gelten.

  1. Die leere Menge und die Gesamtmenge sind offen.
  2. Es sei eine beliebige Indexmenge und seien , , offene Mengen. Dann ist auch die Vereinigung
    offen.
  3. Es sei eine endliche Indexmenge und seien , , offene Mengen. Dann ist auch der Durchschnitt
    offen.


Aufgabe * Aufgabe 33.8 ändern

Sei ein metrischer Raum. Zeige, dass die offenen Kugeln offen sind.


Aufgabe Aufgabe 33.9 ändern

Sei ein metrischer Raum. Zeige, dass die abgeschlossenen Kugeln abgeschlossen sind.


Aufgabe Referenznummer erstellen

Zeige, dass auf dem die euklidische Metrik, die Summenmetrik und die Maximumsmetrik dieselben offenen Mengen definieren.


Aufgabe Referenznummer erstellen

Sei ein metrischer Raum. Zeige, dass in die sogenannte Hausdorff-Eigenschaft gilt, d.h. zu je zwei verschiedenen Punkten und gibt es offene Mengen und mit


Aufgabe * Referenznummer erstellen

Sei ein metrischer Raum. Zeige, dass jede endliche Teilmenge abgeschlossen ist.


Aufgabe Referenznummer erstellen

Zeige, dass die Menge der reellen Zahlen in abgeschlossen ist.


Aufgabe Referenznummer erstellen

Zeige, dass die Menge

in abgeschlossen ist.


Aufgabe Referenznummer erstellen

Zeige, dass die Menge der rationalen Zahlen in weder offen noch abgeschlossen ist.


Aufgabe Referenznummer erstellen

Sei ein metrischer Raum und eine Teilmenge mit der induzierten Metrik. Zeige, dass eine Teilmenge genau dann offen in ist, wenn es eine in offene Menge mit gibt.


Aufgabe Referenznummer erstellen

Zeige, dass auf jeder Menge die diskrete Metrik in der Tat eine Metrik ist.


Aufgabe Referenznummer erstellen

Sei eine Menge, die mit der diskreten Metrik versehen sei. Zeige, dass jede Teilmenge von sowohl offen als auch abgeschlossen ist.


Aufgabe Referenznummer erstellen

Es sei eine Folge in einem metrischen Raum . Zeige, dass die Folge genau dann gegen konvergiert, wenn die Folge der Abstände in gegen konvergiert.


Aufgabe Referenznummer erstellen

Zeige, dass eine konvergente Folge in einem metrischen Raum genau einen Häufungspunkt besitzt.


Aufgabe Referenznummer erstellen

Sei ein metrischer Raum und sei eine Folge in . Zeige, dass die Menge aller Häufungspunkte dieser Folge abgeschlossen ist.


Aufgabe * Referenznummer erstellen

Es sei eine Folge in einem metrischen Raum . Zeige, dass die Folge genau dann gegen konvergiert, wenn in jeder offenen Menge mit alle bis auf endlich viele Folgenglieder liegen.




Aufgaben zum Abgeben

Aufgabe (2 Punkte)Referenznummer erstellen

Entscheide, ob für vier Punkte in der euklidischen Ebene stets die Abschätzung

gilt.


Aufgabe (3 Punkte)Referenznummer erstellen

Es seien und zwei verschiedene Punkte im und die dadurch definierte Gerade. Zeige, dass abgeschlossen in ist.


Aufgabe (6 (2+2+2) Punkte)Referenznummer erstellen

a) Definiere auf der Einheitssphäre, also der Kugeloberfläche

die „geodätische Metrik“, bei der der Abstand zweier Punkte durch die Länge der kürzesten Verbindung auf der Oberfläche gegeben ist.

b) Zeige, dass es sich um eine Metrik handelt.

c) Welchen Abstand besitzen die Punkte und in der euklidischen und in der geodätischen Metrik?

Die kürzeste Verbindung liegt auf dem Großkreis, den man enthält, wenn man die Kugeloberfläche mit der durch gegebenen Ebene schneidet (wann definieren diese drei Punkte keine Ebene?). Die Formel für den Kreisumfang und die Tatsache, dass der Winkel proportional zur Bogenlänge ist, darf verwendet werden.

Aufgabe (4 Punkte)Referenznummer erstellen

Sei ein metrischer Raum und sei eine Folge in . Zeige, dass ein Punkt genau dann ein Häufungspunkt der Folge ist, wenn es eine gegen konvergente Teilfolge gibt.


Aufgabe (4 Punkte)Referenznummer erstellen

Sei ein metrischer Raum und sei eine Folge in , die gegen konvergiere. Es sei eine weitere Folge derart, dass die Abstände eine Nullfolge in sei. Zeige, dass auch gegen konvergiert.



<< | Kurs:Analysis (Osnabrück 2014-2016)/Teil II | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)