Kurs:Analysis (Osnabrück 2021-2023)/Teil I/Arbeitsblatt 17

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Übungsaufgaben

Aufgabe

Es sei eine positive reelle Zahl. Zeige für jedes die Gleichheit


Aufgabe

Zeige, dass für die Exponentialfunktionen

zur Basis die folgenden Rechenregeln gelten (dabei seien und , bei (4) sei zusätzlich ).

  1. .
  2. .
  3. .
  4. .


Aufgabe

Zeige, dass die Logarithmen zur Basis die folgenden Rechenregeln erfüllen.

  1. Es ist und , das heißt der Logarithmus zur Basis b ist die Umkehrfunktion zur Exponentialfunktion zur Basis .
  2. Es gilt
  3. Es gilt für .
  4. Es gilt


Aufgabe *

  1. Zeige die Gleichheit
  2. Stimmt diese Gleichung auch ohne die äußeren Beträge?
  3. Wie sieht es aus, wenn man die inneren Beträge weglässt?


Aufgabe *

Zeige, dass die Hintereinanderschaltung von zwei Exponentialfunktionen keine Exponentialfunktion sein muss.


Aufgabe

Eine Währungsgemeinschaft habe eine Inflation von jährlich . Nach welchem Zeitraum (in Jahren und Tagen) haben sich die Preise verdoppelt?


Aufgabe

Es seien und fixiert. Zeige


Aufgabe

Es sei eine konvergente Folge komplexer Zahlen mit dem Grenzwert und eine konvergente Folge positiver reeller Zahlen mit dem positiven Grenzwert . Zeige, dass die durch definierte Folge gegen konvergiert.


Aufgabe

Es sei eine konvergente Folge komplexer Zahlen mit dem Grenzwert und eine konvergente Folge positiver reeller Zahlen mit dem Grenzwert . Zeige durch ein Beispiel, dass die durch definierte Folge nicht konvergieren muss.


Aufgabe

Es sei , , eine summierbare Familie komplexer Zahlen und eine Teilmenge. Zeige, dass auch die Teilfamilie , , summierbar ist.


Aufgabe *

Es sei , , eine Familie komplexer Zahlen. Zeige, dass die Familie genau dann summierbar ist, wenn die Familie der Realteile , , und die Familie der Imaginärteile , , summierbar ist. Zeige, das in diesem Fall

gilt.


Aufgabe

Es sei eine Indexmenge und , , eine Familie von komplexen Zahlen. Die Betragsfamilie , , sei summierbar. Zeige, dass , , summierbar ist.


Aufgabe

Es sei eine Indexmenge und , , eine Familie von komplexen Zahlen. Die Familie , , sei summierbar. Zeige, dass , , summierbar ist.

Tipp: Man zeige dieses Resultat zuerst für reelle Familien und ziehe dann Aufgabe 17.11 heran.

Für Familien, anders als wie bei Reihen, gibt es also keinen Unterschied zwischen summierbar und absolut summierbar.

Aufgabe

Es sei eine Indexmenge und , , eine Familie von komplexen Zahlen. Zeige, dass diese Familie genau dann summierbar ist, wenn die Familie

nach oben beschränkt ist.


Aufgabe *

Eine echte Potenz ist eine natürliche Zahl der Form mit . Zeige, dass die Familie der Kehrwerte der echten Potenzen summierbar ist.


Aufgabe

Sei , . Zeige, dass die Familie

summierbar ist.


Aufgabe

Sei , . Berechne zur summierbaren Familie

die Teilsummen

zu jedem und berechne .


Aufgabe

Sei , . Zu sei

Berechne zu jedem zur summierbaren Familie

die Teilsummen

und berechne .


Aufgabe *

Bestimme, ob die Familie

summierbar ist oder nicht.


Aufgabe

Wir betrachten die Familie

  1. Zeige, dass diese Familie nicht summierbar ist.
  2. Es sei . Ist die Teilfamilie

    summierbar?

  3. Es sei . Ist die Teilfamilie

    summierbar?


Aufgabe

Bestimme die Koeffizienten der geometrischen Reihe im Entwicklungspunkt .

(Für ist es hilfreich, eine Formel für aufzustellen. Für wird die Aufsummierung ziemlich kompliziert. Mit dem Ableitungskalkül haben wir bald eine einfache Möglichkeit, diese Koeffizienten auszurechnen. Dieser beruht für Potenzreihen allerdings auf dem Entwicklungssatz.)



Aufgaben zum Abgeben

Aufgabe (4 Punkte)

Sei , , eine Familie von komplexen Zahlen. Zeige, dass diese Familie genau dann summierbar ist, wenn die Reihe

absolut konvergiert.


Aufgabe (3 Punkte)

Es sei eine stetige Funktion, aber nicht die Nullfunktion. Zeige, dass die Wertefamilie , , nicht summierbar ist.


Aufgabe (5 Punkte)

Es sei diejenige Teilmenge der natürlichen Zahlen, die aus allen Zahlen besteht, in deren Dezimalentwicklung keine vorkommt. Zeige, dass

summierbar ist.


Aufgabe (5 Punkte)

Bestimme, ob die Familie

summierbar ist oder nicht.


Aufgabe (5 Punkte)

Es sei eine Indexmenge und , , eine summierbare Familie von nichtnegativen reellen Zahlen. Zeige, dass die Teilmenge

abzählbar ist.


Aufgabe (3 Punkte)

Bestimme die Koeffizienten der Exponentialreihe im Entwicklungspunkt .



<< | Kurs:Analysis (Osnabrück 2021-2023)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)