Zum Inhalt springen

Kurs:Mathematik (Osnabrück 2009-2011)/Teil II/Arbeitsblatt 47/kontrolle

Aus Wikiversity



Aufwärmaufgaben

Aufgabe Aufgabe 47.1 ändern

Es sei ein -dimensionaler reeller Vektorraum und eine symmetrische Bilinearform auf . Zeige, dass folgende Eigenschaften äquivalent sind.

  1. Die Bilinearform ist nicht ausgeartet.
  2. Die Gramsche Matrix der Bilinearform bezüglich einer Basis ist invertierbar.
  3. Die Bilinearform ist vom Typ (mit einem .)



Aufgabe Aufgabe 47.2 ändern

Es sei eine nicht-ausgeartete symmetrische Bilinearform vom Typ auf einem - dimensionalen reellen Vektorraum. Es sei eine Basis von und es sei die Gramsche Matrix zu bezüglich dieser Basis. Zeige, dass das Vorzeichen von gleich ist.



Man gebe ein Beispiel einer symmetrischen Bilinearform, das zeigt, dass der Unterraum maximaler Dimension, auf dem die Einschränkung der Form positiv definit ist, nicht eindeutig bestimmt ist.



Bestimme den Typ der durch die Gramsche Matrix

gegebenen symmetrischen Bilinearform.



Bestimme den Typ der Hesse-Form zur Funktion

in jedem Punkt.



Bestimme das Taylor-Polynom vom Grad für die Funktion

im Nullpunkt .



Notiere das Taylor-Polynom für eine (hinreichend oft differenzierbare) Funktion in oder Variablen für die Grade .


In den folgenden Aufgaben werden einige Eigenschaften der Polynomialkoeffizienten besprochen, die eine Verallgemeinerung der Binomialkoeffizienten sind.

Es sei und ein - Tupel natürlicher Zahlen. Es sei . Dann nennt man die Zahl

einen Polynomialkoeffizienten.



In einem Studium werden Leistungsnachweise verlangt, und zwar Seminarscheine, Klausuren, mündliche Prüfungen und eine Hausarbeit, die in beliebiger Reihenfolge erbracht werden können. Wie viele Reihenfolgen gibt es, um diese Leistungsnachweise zu erbringen?



Es seien und mit . Zeige, dass die Anzahl der Abbildungen

bei denen das Urbild zu aus genau Elementen besteht, gleich dem Multinomialkoeffizienten

ist.



Es seien und mit . Zeige, dass die Anzahl der -Tupel

in denen die Zahl genau -mal vorkommt, gleich

ist.



Zeige, dass die Anzahl der geordneten Partitionen mit eventuell leeren Blöcken zum Anzahltupel einer -elementigen Menge gleich

ist.



Es seien reelle Zahlen. Beweise den Polynomialsatz, das ist die Gleichung




Aufgaben zum Abgeben

Bestimme den Typ der durch die Gramsche Matrix

gegebenen symmetrischen Bilinearform.



Bestimme das Taylor-Polynom vom Grad für die Funktion

im Nullpunkt .



Bestimme den Typ der Hesse-Form zur Funktion

im Punkt .



Bestimme den Typ der Hesse-Form zur Funktion

in jedem Punkt.



Es sei ein Polynom in Variablen vom Grad . Zeige, dass mit dem Taylor-Polynom vom Grad von im Nullpunkt übereinstimmt.



<< | Kurs:Mathematik (Osnabrück 2009-2011)/Teil II | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)