Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Vorlesung 9/kontrolle
- Lineare Abbildungen
Es sei ein Körper und es seien und Vektorräume über . Eine Abbildung
heißt lineare Abbildung, wenn die beiden folgenden Eigenschaften erfüllt sind.
- für alle .
- für alle und .
Die erste Eigenschaft nennt man dabei die Additivität und die zweite Eigenschaft die Verträglichkeit mit Skalierung. Wenn man den Grundkörper betonen möchte spricht man von -Linearität. Die Identität , die Nullabbildung und die Inklusionen von Untervektorräumen sind die einfachsten Beispiele für lineare Abbildungen.
Es sei ein Körper und sei der - dimensionale Standardraum. Dann ist die -te Projektion, also die Abbildung
eine - lineare Abbildung. Dies folgt unmittelbar aus der komponentenweisen Addition und Skalarmultiplikation auf dem Standardraum. Die -te Projektion heißt auch die -te Koordinatenfunktion.
Es sei ein Körper und seien Vektorräume über . Es seien
Dann ist auch die Verknüpfung
eine lineare Abbildung.
Beweis
Es sei ein Körper und es seien und zwei - Vektorräume. Es sei
eine bijektive lineare Abbildung.
Dann ist auch die Umkehrabbildung
Beweis
- Festlegung auf einer Basis
Hinter der folgenden Aussage (dem Festlegungssatz) steckt das wichtige Prinzip, dass in der linearen Algebra (von endlichdimensionalen Vektorräumen) die Objekte durch endlich viele Daten bestimmt sind.
Es sei ein Körper und es seien und Vektorräume über . Es sei , , eine endliche Basis von und es seien , , Elemente in .
Dann gibt es genau eine lineare Abbildung
Da sein soll und eine lineare Abbildung für jede Linearkombination die Eigenschaft
erfüllt, und jeder Vektor
sich als eine solche Linearkombination schreiben lässt, kann es maximal nur eine solche lineare Abbildung geben.
Wir definieren nun umgekehrt eine
Abbildung
indem wir jeden Vektor mit der gegebenen Basis als
schreiben und
ansetzen. Da die Darstellung von als eine solche
Linearkombination
eindeutig ist, ist diese Abbildung wohldefiniert. Die Eigenschaft
ist dabei klar.
Zur Linearität. Für zwei Vektoren
und
gilt
Die Verträglichkeit mit der skalaren Multiplikation ergibt sich ähnlich, siehe
Aufgabe 9.6.
Die einfachsten linearen Abbildungen sind (neben der Nullabbildung) diejenigen von nach . Eine solche lineare Abbildung
ist aufgrund von Satz 9.5 bzw. direkt aufgrund der Definition durch bzw. durch den Wert für ein einziges , , festgelegt. Es ist also mit einem eindeutig bestimmten . Insbesondere im physikalischen Kontext, wenn ist und wenn zwischen zwei messbaren Größen ein linearer Zusammenhang besteht, spricht man von Proportionalität, und heißt der Proportionalitätsfaktor. In der Schule tritt die lineare Beziehung zwischen zwei skalaren Größen als „Dreisatz“ auf.
- Lineare Abbildungen und Matrizen
Eine lineare Abbildung
ist durch die Bilder , , der Standardvektoren eindeutig festgelegt, und jedes ist eine Linearkombination
und damit durch die Elemente eindeutig festgelegt. Insgesamt ist also eine solche lineare Abbildung durch Elemente , , , festgelegt. Eine solche Datenmenge kann man wieder als Matrix schreiben. Nach dem Festlegungssatz gilt dies, sobald sowohl im Definitionsraum als auch im Zielraum der linearen Abbildung eine Basis fixiert ist.
Definition Definition 9.7 ändern
Es sei ein Körper und sei ein - dimensionaler Vektorraum mit einer Basis und sei ein -dimensionaler Vektorraum mit einer Basis .
Zu einer linearen Abbildung
heißt die - Matrix
wobei die -te Koordinate von bezüglich der Basis ist, die beschreibende Matrix zu bezüglich der Basen.
Zu einer Matrix heißt die durch
gemäß Satz 9.5 definierte lineare Abbildung die durch festgelegte lineare Abbildung.
Die Identität auf einem Vektorraum der Dimension wird bezüglich einer beliebigen Basis durch die Einheitsmatrix beschrieben.
Es sei ein Körper und sei ein - dimensionaler Vektorraum mit einer Basis und sei ein -dimensionaler Vektorraum mit einer Basis .
Dann sind die in Definition 9.7 festgelegten Abbildungen
invers zueinander.
Wir zeigen, dass beide Hintereinanderschaltungen die Identität sind. Wir starten mit einer Matrix und betrachten die Matrix
Es sei nun eine lineare Abbildung, und betrachten wir
Zwei lineare Abbildungen stimmen nach Satz 9.5 überein, wenn man zeigen kann, dass sie auf der Basis übereinstimmen. Es ist
Dabei ist nach Definition der Koeffizient die -te Koordinate von bezüglich der Basis . Damit ist diese Summe gleich .
Eine lineare Abbildung
wird zumeist durch die Matrix bezüglich der Standardbasen links und rechts beschrieben. Das Ergebnis der Matrixmultiplikation
ist dann direkt als Punkt in interpretierbar. Die -te Spalte von ist das Bild des -ten Standardvektors .
- Untervektorräume unter linearen Abbildungen
Es sei ein Körper, und seien - Vektorräume und
sei eine - lineare Abbildung. Dann gelten folgende Aussagen.
- Für einen Untervektorraum ist auch das Bild ein Untervektorraum von .
- Insbesondere ist das Bild der Abbildung ein Untervektorraum von .
- Für einen Untervektorraum ist das Urbild ein Untervektorraum von .
- Insbesondere ist ein Untervektorraum von .
Beweis
Es sei ein Körper, und seien - Vektorräume und
sei eine - lineare Abbildung. Dann nennt man
den Kern von .
Der Kern ist also nach der obigen Aussage ein Untervektorraum von .
Wichtig ist das folgende Injektivitätskriterium.
Es sei ein Körper, und seien - Vektorräume und
sei eine - lineare Abbildung.
Dann ist genau dann injektiv, wenn ist.
Wenn die Abbildung injektiv ist, so kann es neben
keinen weiteren Vektor
mit
geben. Also ist
.
Es sei umgekehrt
und seien
gegeben mit
.
Dann ist wegen der Linearität
Daher ist
und damit
.
- Die Dimensionsformel
Die folgende Aussage heißt Dimensionsformel.
Es sei ein Körper, und seien - Vektorräume und
sei eine - lineare Abbildung und sei endlichdimensional.
Dann gilt
Es sei . Es sei der Kern der Abbildung und seine Dimension (). Es sei
eine Basis von . Aufgrund des Basisergänzungssatzes gibt es Vektoren
derart, dass
eine Basis von ist. Wir behaupten, dass
eine Basis des Bildes ist. Es sei ein Element des Bildes . Dann gibt es ein mit . Dieses lässt sich mit der Basis als
schreiben. Dann ist
sodass sich als Linearkombination der schreiben lässt. Zum Beweis der linearen Unabhängigkeit der , , sei eine Darstellung der Null gegeben,
Dann ist
Also gehört zum Kern der Abbildung und daher kann man
schreiben. Da insgesamt eine Basis von vorliegt, folgt, dass alle Koeffizienten sein müssen, also sind insbesondere
.
Es sei ein Körper, und seien - Vektorräume und
sei eine - lineare Abbildung und sei endlichdimensional. Dann nennt man
den Rang von .
Die Dimensionsformel kann man auch als
ausdrücken.
Wir betrachten die durch die Matrix
gegebene lineare Abbildung
Zur Bestimmung des Kerns müssen wir das homogene lineare Gleichungssystem
lösen. Der Lösungsraum ist
und dies ist der Kern von . Der Kern ist also eindimensional und daher ist die Dimension des Bildes nach der Dimensionsformel gleich .
Es sei ein Körper und es seien und Vektorräume über der gleichen Dimension . Es sei
eine lineare Abbildung.
Dies folgt aus der Dimensionsformel und Lemma 9.12.
<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I | >> |
---|