Zum Inhalt springen

Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Vorlesung 10

Aus Wikiversity



Verknüpfung von linearen Abbildungen und Matrizen



Bei der Korrespondenz zwischen linearen Abbildungen und Matrizen entsprechen sich die Hintereinanderschaltung von linearen Abbildungen und die Matrizenmultiplikation.

Damit ist folgendes gemeint: es seien Vektorräume über einem Körper mit Basen

Es seien

lineare Abbildungen. Dann gilt für die beschreibenden Matrizen von und der Hintereinanderschaltung die Beziehung

Wir betrachten die Abbildungskette

Bezüglich der Basen werde durch die -Matrix und durch die -Matrix beschrieben. Die Hintereinanderschaltung wirkt auf einen Basisvektor folgendermaßen.

Dabei sind diese Koeffizienten gerade die Einträge in der Produktmatrix .

Daraus folgt beispielsweise, dass das Produkt von Matrizen assoziativ ist.



Invertierbare Matrizen

Es sei ein Körper und sei eine - Matrix über . Dann heißt invertierbar, wenn es eine weitere Matrix mit

gibt.


Es sei ein Körper. Zu einer invertierbaren Matrix heißt die Matrix mit

die inverse Matrix von . Man schreibt dafür



Lineare Abbildungen und Basiswechsel



Es sei ein Körper und es seien und endlichdimensionale - Vektorräume. Es seien und Basen von und und Basen von . Es sei

eine lineare Abbildung, die bezüglich der Basen und durch die Matrix beschrieben werde.

Dann wird bezüglich der Basen und durch die Matrix

beschrieben, wobei und die Übergangsmatrizen sind, die die Basiswechsel von nach und von nach beschreiben.



Es sei ein Körper und es sei ein endlichdimensionaler - Vektorraum. Es sei

eine lineare Abbildung. Es seien und Basen von .

Dann besteht zwischen den Matrizen, die die lineare Abbildung bezüglich bzw. (beidseitig) beschreiben, die Beziehung

Dies folgt direkt aus Lemma 10.4.




Eigenschaften von linearen Abbildungen



Es sei ein Körper und es seien und Vektorräume über der Dimension bzw. . Es sei

eine lineare Abbildung, die bezüglich zweier Basen durch die Matrix beschrieben werde. Dann gelten folgende Eigenschaften.

  1. ist genau dann injektiv, wenn die Spalten der Matrix linear unabhängig sind.
  2. ist genau dann surjektiv, wenn die Spalten der Matrix ein Erzeugendensystem von bilden.
  3. Bei ist genau dann bijektiv, wenn die Spalten der Matrix eine Basis von bilden, und dies ist genau dann der Fall, wenn invertierbar ist.

Es seien und Basen von bzw. und es seien die Spaltenvektoren von . (1). Die Abbildung hat die Eigenschaft

wobei der -te Eintrag des -ten Spaltenvektors ist. Daher ist

Dies ist genau dann , wenn für alle ist, und dies ist äquivalent zu

Dafür gibt es ein nichttriviales (Lösungs-)Tupel genau dann, wenn die Spalten linear abhängig sind und genau dann, wenn nicht injektiv ist.
(2). Siehe Aufgabe 10.2.
(3). Sei . Die erste Äquivalenz folgt aus (1) und (2). Wenn bijektiv ist, so gibt es die (lineare) Umkehrabbildung mit

Es sei die Matrix zu und die Matrix zu . Die Matrix zur Identität ist die Einheitsmatrix. Nach Lemma 10.1 ist daher

und somit ist invertierbar. Die Umkehrung wird ähnlich bewiesen.




Elementarmatrizen

Es sei ein Körper und sei eine - Matrix über . Dann nennt man die folgenden Manipulationen an elementare Zeilenumformungen.

  1. Vertauschung von zwei Zeilen.
  2. Multiplikation einer Zeile mit .
  3. Addition des -fachen einer Zeile zu einer anderen Zeile.

Elementare Zeilenumformungen ändern nicht den Lösungsraum von homogenen linearen Gleichungssystemen, wie in Lemma 5.7 gezeigt wurde.



Es sei ein Körper und sei eine - Matrix über .

Dann gibt es elementare Zeilenumformungen und eine (Neu-)Nummerierung der Spalten

und ein derart, dass in der entstandenen Matrix die Spalten die Gestalt

und

besitzen. Durch elementare Zeilenumformungen und zusätzliche Spaltenvertauschungen kann man also eine Matrix auf die Gestalt

mit bringen.

Dies beruht auf den entsprechenden Manipulationen wie beim Eliminationsverfahren, siehe Vorlesung.



Es sei ein Körper. Mit bezeichnen wir diejenige - Matrix, die an der Stelle den Wert und sonst überall den Wert hat. Dann nennt man die folgenden Matrizen Elementarmatrizen.

  1. .
  2. .
  3. .

Ausgeschrieben sehen diese Elementarmatrizen folgendermaßen aus.



Es sei ein Körper und eine - Matrix mit Einträgen in . Dann hat die Multiplikation mit den - Elementarmatrizen von links mit folgende Wirkung.

  1. Vertauschen der -ten und der -ten Zeile von .
  2. Multiplikation der -ten Zeile von mit .
  3. Addition des -fachen der -ten Zeile von zur -ten Zeile ().

Beweis

Siehe Aufgabe 10.11.




Auffinden der inversen Matrix

Es sei eine quadratische Matrix. Wie kann man entscheiden, ob die Matrix invertierbar ist, und wie kann man die inverse Matrix finden?

Dazu legt man eine Tabelle an, wo in der linken Seite zunächst die Matrix steht und in der rechten Seite die Einheitsmatrix. Jetzt wendet man auf beide Matrizen schrittweise die gleichen elementaren Zeilenumformungen an. Dabei soll in der linken Seite die Ausgangsmatrix in die Einheitsmatrix umgewandelt werden. Dies ist genau dann möglich, wenn diese Matrix invertierbar ist. Wir behaupten, dass bei dieser Vorgehensweise in der rechten Seite die Matrix als Endmatrix entsteht. Dies beruht auf folgendem Invarianzprinzip. Jede elementare Zeilenumformung kann als eine Matrizenmultiplikation mit einer Elementarmatrix von links realisiert werden. Wenn in der Tabelle

steht, so steht im nächsten Schritt

Wenn man das Inverse (das man noch nicht kennt, das es aber gibt unter der Voraussetzung, dass die Matrix invertierbar ist.) der linken Seite mit der rechten Seite multipliziert, so ergibt sich

D.h., dass sich dieser Ausdruck bei den Einzelschritten nicht ändert. Zu Beginn ist dieser Ausdruck gleich , daher muss zum Schluss für gelten


Wir wollen zur Matrix gemäß dem in Verfahren 10.11 beschriebenen Verfahren die inverse Matrix bestimmen.




<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF) (PDF englisch)