Potenzreihen/C/Funktionenfolge/Konvergenz/Textabschnitt

Aus Wikiversity

Es seien , , komplexe Zahlen, und die zugehörige Potenzreihe im Entwicklungspunkt . Wir betrachten die Funktionenfolge mit

Im Allgemeinen konvergiert diese Funktionenreihe weder punktweise auf ganz noch gleichmäßig. Wir werden aber sehen, dass häufig auf geeigneten Teilmengen gleichmäßige Konvergenz vorliegt.



Lemma  

Es sei eine Folge komplexer Zahlen und . Die Potenzreihe

sei für eine komplexe Zahl , , konvergent.

Dann ist für jeden reellen Radius  mit die Potenzreihe auf der abgeschlossenen Kreisscheibe punktweise absolut und gleichmäßig konvergent.

Beweis  

Wir werden Fakt auf anwenden. Wegen der Konvergenz für sind die Summanden nach Fakt eine Nullfolge, d.h. es gibt insbesondere ein mit

für alle . Daher gelten für jedes die Abschätzungen

Dabei ist nach Voraussetzung

Daher liegen rechts (bis auf den Vorfaktor ) die Summanden einer nach Fakt konvergenten geometrische Reihe vor. Deren Grenzwert liefert eine obere Schranke für die Reihe der Supremumsnormen.



Definition  

Für eine Potenzreihe

heißt

der Konvergenzradius der Potenzreihe. Das ist eine nichtnegative reelle Zahl oder .

Jede Potenzreihe hat also grundsätzlich das gleiche Konvergenzverhalten: Es gibt eine Kreisscheibe (die eben durch den Konvergenzradius bestimmt ist, wobei die Extremfälle und erlaubt sind) um den Entwicklungspunkt, in deren Innerem die Potenzreihe konvergiert und so, dass sie außerhalb davon in keinem Punkt konvergiert. Nur auf dem Rand der Kreisscheibe kann alles mögliche passieren. Der Fall ist nicht sehr interessant. Bei positivem Konvergenzradius (einschließlich dem Fall ) sagt man auch, dass die Potenzreihe konvergiert.



Korollar  

Es sei

eine Potenzreihe mit einem positiven Konvergenzradius .

Dann stellt die Potenzreihe auf der offenen Kreisscheibe eine stetige Funktion dar.

Beweis  

Jeder Punkt liegt im Innern einer abgeschlossenen Kreisscheibe mit . Auf dieser abgeschlossenen Kreisscheibe ist die Potenzreihe nach Fakt gleichmäßig konvergent, daher ist nach Fakt die Grenzfunktion stetig.



Korollar  

Die Exponentialreihe und die trigonometrischen Reihen Sinus und Kosinus

besitzen einen unendlichen Konvergenzradius, und die komplexe Exponentialfunktion, die komplexe Sinusfunktion und die komplexe Kosinusfunktion sind stetig.

Beweis  

Dies folgt aus Fakt und Fakt.



Korollar  

Für die (durch die Exponentialreihe definierte) reelle Exponentialfunktion

gilt

Beweis  

Dies folgt aus Fakt, aus Fakt und aus Aufgabe.


Die reelle Zahl stimmt mit der als eingeführten eulerschen Zahl überein, was in Fakt bewiesen wird. Aufgrund dieses Sachverhaltes und der vorstehenden Aussage schreiben wir häufig , und zwar auch für komplexe Argumente.