Angeordneter Körper/Cauchy-Folgen/Dezimalbruchfolgen/Einführung/Textabschnitt

Aus Wikiversity
Wechseln zu: Navigation, Suche

Ein Problem des Konvergenzbegriffes ist, dass zur Formulierung der Grenzwert verwendet wird, den man unter Umständen noch gar nicht kennt. Wenn man beispielsweise die durch das babylonische Wurzelziehen konstruierte Folge (sagen wir zur Berechnung von ) mit einem rationalen Startwert betrachtet, so ist dies eine Folge aus rationalen Zahlen. Wenn wir diese Folge in betrachten, wo existiert, so ist die Folge konvergent. Innerhalb der rationalen Zahlen ist sie aber definitiv nicht konvergent. Es ist wünschenswert, allein innerhalb der rationalen Zahlen den Sachverhalt formulieren zu können, dass die Folgenglieder beliebig nahe zusammenrücken, auch wenn man nicht sagen kann, dass die Folgenglieder einem Grenzwert beliebig nahe zustreben. Dazu dient der Begriff der Cauchy-Folge.



Definition  

Es sei ein angeordneter Körper. Eine Folge in heißt Cauchy-Folge, wenn folgende Bedingung erfüllt ist.

Zu jedem , , gibt es ein derart, dass für alle die Beziehung

gilt.

Eine Cauchy-Folge besitzt alle Eigenschaften einer konvergenten Folge bis auf die Konvergenz. Eine nichtkonvergente Cauchy-Folge entdeckt eine „Lücke“. Beim Übergang von nach schließt man diese Lücken, indem man (Äquivalenzklassen von) Cauchy-Folgen hinzunimmt.



Satz  

Es sei ein angeordneter Körper. Dann ist jede konvergente Folge

eine Cauchy-Folge.

Beweis  

Sei die konvergente Folge mit Grenzwert . Sei gegeben. Wir wenden die Konvergenzeigenschaft auf an. Daher gibt es ein mit

Für beliebige gilt dann aufgrund der Dreiecksungleichung

  Also liegt eine Cauchy-Folge vor.




Lemma  

Es sei ein angeordneter Körper. Dann ist eine Folge eine Cauchy-Folge genau dann, wenn folgende Bedingung gilt: Zu jedem gibt es ein derart, dass für alle die Abschätzung gilt.

Beweis  

Eine Cauchy-Folge erfüllt auch die angegebene Bedingung, da man ja setzen kann.
Für die Umkehrung sei vorgegeben. Die Bedingung der Aussage gilt insbesondere für , d.h. es gibt ein derart, dass für jedes die Abschätzung

gilt. Damit gilt aufgrund der Dreiecksungleichung für beliebige die Abschätzung

so dass eine Cauchy-Folge vorliegt.




Lemma  

Eine Dezimalbruchfolge

in einem

archimedisch angeordneten Körper

ist eine Cauchy-Folge.

Beweis  

Wegen der definierenden Eigenschaft für eine Dezimalbruchfolge

ist für auch

wobei wir im letzten Schritt die endliche geometrische Reihe benutzt haben. Somit ist für

Dieser Ausdruck wird in einem archimedisch angeordneten Körper beliebig klein.

Dies bedeutet insbesondere, dass jede „Kommazahl“, also jede „unendliche Ziffernfolge“, eine Cauchy-Folge ist.



Lemma  

Es sei ein archimedisch angeordneter Körper und . Es sei ein positiver Startwert und die zugehörige Heron-Folge. Dann gelten folgende Aussagen.

  1. Die Heron-Folge ist eine Cauchy-Folge.
  2. Wenn es in ein positives Element mit gibt, so konvergiert die Folge gegen dieses Element.
  3. Wenn die Folge in gegen ein Element konvergiert, so ist .

Beweis  

  1. Zu ist nach Fakt  (3) und somit ist

    Diese Intervalllängen bilden nach Fakt  (4) eine Nullfolge.

  2. Nach Fakt  (1) ist

    Somit ist

    und rechts steht wieder die Nullfolge.

  3. Nach Fakt kann der Grenzwert nicht sein. Nach Fakt  (5) konvergiert daher gegen und somit konvergiert nach Fakt  (1)

    (Betrachten der beiden Seiten) gegen

    Daraus ergibt sich .



Eine Dezimalbruchfolge ist nach Fakt eine Cauchy-Folge. Sie ist auch eine wachsende Folge, die nach oben beschränkt ist. Solche Folgen sind stets Cauchy-Folgen.



Lemma  

Es sei ein archimedisch angeordneter Körper. Es sei eine wachsende, nach oben beschränkte Folge.

Dann ist eine Cauchy-Folge.

Beweis  

Es sei eine obere Schranke, also für alle Folgenglieder .  Wir nehmen an, dass keine Cauchy-Folge ist, und verwenden die Charakterisierung aus Fakt. Somit gibt es ein derart, dass es für jedes ein gibt mit (wir können die Betragstriche weglassen). Wir können daher induktiv eine wachsende Folge von natürlichen Zahlen definieren durch

etc. Andererseits gibt es aufgrund des Archimedesaxioms ein mit

Die Summe der ersten Differenzen der Teilfolge , , ergibt

  Dies impliziert im Widerspruch zur Voraussetzung, dass eine obere Schranke der Folge ist.



Lemma

Eine Cauchy-Folge in einem angeordneten Körper

ist beschränkt.

Beweis

Siehe Aufgabe.




Lemma  

Es sei ein angeordneter Körper. Es seien und Cauchy-Folgen in .

Dann sind auch die Summe und das Produkt der beiden Folgen wieder eine Cauchy-Folge.

Beweis  

Zum Beweis der Summeneigenschaft sei vorgegeben. Aufgrund der Cauchy-Eigenschaft gibt es natürliche Zahlen und mit

Diese Abschätzungen gelten dann auch für . Für diese Zahlen gilt somit

Zum Beweis der Produkteigenschaft sei vorgegeben. Die beiden Cauchy-Folgen sind nach Fakt insbesondere beschränkt und daher existiert ein mit

für alle . Aufgrund der Cauchy-Eigenschaft gibt es natürliche Zahlen und mit

Diese Abschätzungen gelten dann auch für . Für diese Zahlen gilt daher


Wenn eine Folge in konvergiert, so ist der Grenzwert oder positiv oder negativ. Wenn der Grenzwert positiv ist, so können zwar am Anfang der Folge auch negative Folgeglieder auftreten, ab einem bestimmten müssen aber alle Folgenglieder positiv sein, und zwar mindestens so groß wie die Hälfte des Grenzwertes. Eine entsprechende Einteilung gilt für Cauchy-Folgen, wie das folgende Lemma zeigt, das grundlegend für die Ordnung auf den reellen Zahlen ist.



Lemma  

Es sei ein angeordneter Körper und es sei eine Cauchy-Folge in . Dann gibt es die drei folgenden Alternativen.

  1. Die Folge ist eine Nullfolge.
  2. Es gibt eine positive Zahl derart, dass ab einem gewissen die Abschätzung

    für alle gilt.

  3. Es gibt eine positive Zahl derart, dass ab einem gewissen die Abschätzung

    für alle gilt.

Beweis  

Sei die Folge keine Nullfolge. Dann gibt es ein derart, dass es unendlich viele Folgenglieder mit

gibt. Dann gibt es auch unendlich viele Folgenglieder mit

oder mit

Nehmen wir das erste an. Wegen der Cauchy-Eigenschaft für gibt es ein derart, dass

für alle gilt. Wenn man die beiden Aussagen verbindet, so ist für




Lemma  

Es sei eine Cauchy-Folge in einem angeordneten Körper mit der Eigenschaft, dass es ein und ein derart gibt, dass für alle die Abschätzung

gilt.

Dann ist auch die durch (für hinreichend groß)

gegebene inverse Folge eine Cauchy-Folge.

Beweis  

Sei vorgegeben. Wegen der Cauchy-Eigenschaft von gibt es ein mit

für alle . Dann gilt für alle die Abschätzung