Kurs:Einführung in die Algebra (Osnabrück 2009)/Vorlesung 18

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Faktorielle Ringe

In der letzten Vorlesung haben wir gesehen, dass in einem Hauptidealbereich einerseits jedes irreduzible Element prim ist und andererseits jedes Element ein Produkt von irreduziblen Elementen und damit auch von Primelementen ist. Wir werden gleich zeigen, dass unter diesen Voraussetzung die Zerlegung in Primelemente sogar im Wesentlichen eindeutig ist. Um dies prägnant fassen zu können, dient der Begriff des faktoriellen Ringes


Definition  

Ein Integritätsbereich heißt faktorieller Bereich, wenn jede Nichteinheit sich als ein Produkt von Primelementen schreiben lässt.



Satz  

Sei ein Integritätsbereich. Dann sind folgende Aussagen äquivalent.

  1. ist faktoriell.
  2. Jede Nichteinheit besitzt eine Faktorzerlegung in irreduzible Elemente, und diese Zerlegung ist bis auf Umordnung und Assoziiertheit eindeutig.
  3. Jede Nichteinheit besitzt eine Faktorzerlegung in irreduzible Elemente, und jedes irreduzible Element ist ein Primelement.

Beweis  

. Sei eine Nichteinheit. Die Faktorisierung in Primelemente ist insbesondere eine Zerlegung in irreduzible Elemente, so dass also lediglich die Eindeutigkeit zu zeigen ist. Dies geschieht durch Induktion über die minimale Anzahl der Primelemente in einer Faktorzerlegung. Wenn es eine Darstellung mit einem Primelement gibt, und eine weitere Zerlegung in irreduzible Faktoren ist, so teilt einen der Faktoren und nach Kürzen durch erhält man, dass das Produkt der übrigen Faktoren rechts eine Einheit sein muss. Das bedeutet aber, dass es keine weiteren Faktoren geben kann. Sei nun und diese Aussage sei für Elemente mit kleineren Faktorisierungen in Primelemente bereits bewiesen. Es sei

eine weitere Zerlegung mit irreduziblen Elementen. Dann teilt wieder einen der Faktoren rechts, sagen wir . Dann muss eine Einheit sein und wir können durch kürzen, wobei wir mit verarbeiten können, was ein zu assoziiertes Element ergibt. Das gekürzte Element hat eine Faktorzerlegung mit Primelementen, so dass wir die Induktionsvoraussetzung anwenden können.
. Wir müssen zeigen, dass ein irreduzibles Element auch prim ist. Sei also irreduzibel und es teile das Produkt , sagen wir

Für und gibt es Faktorzerlegungen in irreduzible Elemente, so dass sich insgesamt die Gleichung

ergibt. Es liegen also zwei Zerlegungen in irreduzible Element vor, die nach Voraussetzung im Wesentlichen übereinstimmen müssen. D.h. insbesondere, dass es auf der rechten Seite einen Faktor gibt, sagen wir , der assoziiert zu ist. Dann teilt auch den ursprünglichen Faktor .
. Das ist trivial.




Satz  

Beweis  

Dies folgt sofort aus Satz 17.15, Lemma 17.16 und Satz 18.2.




Korollar  

Sei ein faktorieller Ring und seien und zwei Elemente mit Primfaktorzerlegungen

(wobei die Einheiten sind und die Exponenten auch sein können). Dann gilt genau dann, wenn für alle Exponenten ist.

Beweis  

Wenn die Exponentenbedingung erfüllt ist, so ist und man kann

schreiben, was die Teilbarkeit bedeutet. Die Umkehrung folgt aus der Eindeutigkeit der Primfaktorzerlegung in einem faktoriellen Ring.




Restklassenringe von Hauptidealbereichen



Satz  

Sei ein Hauptidealbereich und ein Element. Dann sind folgende Bedingungen äquivalent.

  1. ist ein Primelement.
  2. ist ein Integritätsbereich.
  3. ist ein Körper.

Beweis  

Die Äquivalenz (1) (2) gilt in jedem kommutativen Ring (auch für ), siehe Aufgabe *****, und (3) impliziert natürlich (2). Sei also (1) erfüllt und sei von verschieden. Wir bezeichnen einen Repräsentanten davon in ebenfalls mit . Es ist dann und es ergibt sich eine echte Idealinklusion . Ferner können wir schreiben, da wir in einem Hauptidealring sind. Es folgt . Da keine Einheit ist und prim (also nach Lemma 17.11 auch irreduzibel) ist, muss eine Einheit sein. Es ist also , und das bedeutet modulo , also in , dass eine Einheit ist. Also ist ein Körper.


Für die Restklassenringe von Hauptidealbereichen gilt wieder der chinesische Restsatz (für beliebige faktorielle Bereiche gilt er nicht, da das Lemma von Bezout dafür im Allgemeinen nicht gilt).



Satz  

Es sei ein Hauptidealbereich und , , ein Element mit kanonischer Primfaktorzerlegung

Dann gilt für den Restklassenring die kanonische Isomorphie

Beweis  

Wegen gelten die Idealinklusionen und daher gibt es kanonische Ringhomomorphismen

Diese setzen sich zu einem Ringhomomorphismus in den Produktring zusammen, nämlich

Wir müssen zeigen, dass dieser bijektiv ist. Zur Injektivität sei derart, dass es in jeder Komponente auf abgebildet wird. Das bedeutet für alle . D.h. ist ein Vielfaches dieser und aufgrund der Primfaktorzerlegung folgt, dass ein Vielfaches von sein muss. Also ist in .
Zur Surjektivität genügt es zu zeigen, dass alle Elemente, die in einer Komponente den Wert und in allen anderen Komponenten den Wert haben, im Bild liegen. Sei also vorgegeben. Wegen der Eindeutigkeit der Primfaktorzerlegung sind und teilerfremd. Daher gibt es nach dem Lemma von Bezout eine Darstellung der Eins, sagen wir

Betrachten wir . Das wird unter der Restklassenabbildung in der ersten Komponente auf und in den übrigen Komponenten auf abgebildet, wie gewünscht.




Zerlegung in irreduzible Polynome

Wir möchten nun, abhängig von einem gewählten Grundkörper , Aussagen über die irreduziblen Elemente in und über die Primfaktorzerlegung von Polynomen treffen.



Korollar

Sei ein Körper und sei der Polynomring über .

Dann besitzt jedes Polynom , , eine eindeutige Faktorzerlegung

wobei ist und die verschiedene, normierte, irreduzible Polynome sind.

Beweis

Dies folgt aus

Satz 16.11, aus Satz 18.3

und daraus, dass jedes Polynom zu einem normierten Polynom assoziiert ist.


Die irreduziblen Elemente stimmen mit den Primelementen überein, man spricht meist von irreduziblen Polynomen. Diese Eigenschaft hängt wesentlich vom gewählten Körper ab, und nicht für jeden Körper lassen sich die irreduziblen Polynome übersichtlich beschreiben. Bei Irreduzibilitätsfragen kann man stets mit Einheiten multiplizieren, daher muss man nur normierte Polynome untersuchen.

Als echte Faktoren für ein Polynom kommen nur Polynome von kleinerem Grad in Frage. Insbesondere sind daher lineare Polynome, also Polynome von Typ , , stets irreduzibel. Ob ein lineares Polynom ein Faktor eines anderen Polynoms (und damit ein Primfaktor davon) ist, hängt direkt mit den Nullstellen des Polynoms zusammen.



Nullstellen von Polynomen



Lemma  

Sei ein Körper und sei der Polynomring über . Sei ein Polynom und .

Dann ist genau dann eine Nullstelle von , wenn ein Vielfaches des linearen Polynoms ist.

Beweis  

Wenn ein Vielfaches von ist, so kann man

mit einem weiteren Polynom schreiben. Einsetzen ergibt

Im Allgemeinen gibt es aufgrund der Division mit Rest eine Darstellung

wobei oder aber den Grad besitzt, also eine Konstante ist. Einsetzen ergibt

Wenn also ist, so muss der Rest sein, und das bedeutet, dass ist.




Korollar  

Sei ein Körper und sei der Polynomring über . Dann ist ein Polynom vom Grad zwei oder drei genau dann irreduzibel,

wenn es keine Nullstelle in besitzt.

Beweis  

In einer echten Primfaktorzerlegung von , , muss ein Polynom vom Grad eins vorkommen, also ein lineares Polynom. Ein lineares Polynom teilt aber nach Lemma 18.8 das Polynom genau dann, wenn ist.




Korollar  

Sei ein Körper und sei der Polynomring über . Sei ein Polynom () vom Grad .

Dann besitzt maximal Nullstellen.

Beweis  

Wir beweisen die Aussage durch Induktion über . Für ist die Aussage offensichtlich richtig. Sei also und die Aussage sei für kleinere Grade bereits bewiesen. Sei eine Nullstelle von (falls keine Nullstelle besitzt, sind wir direkt fertig), Dann ist nach Lemma 18.8 und hat den Grad , so dass wir auf die Induktionsvoraussetzung anwenden können. Das Polynom hat also maximal Nullstellen. Für gilt . Dies kann nur dann sein, wenn einer der Faktoren ist, so dass eine Nullstelle von gleich ist oder aber eine Nullstelle von ist. Es gibt also maximal Nullstellen von .



Beispiel  

Die Irreduzibilität eines Polynoms hängt wesentlich vom Grundkörper ab. Zum Beispiel ist das reelle Polynom irreduzibel, dagegen zerfällt es als Polynom in als

Ebenso ist das Polynom irreduzibel, aber über hat es die Zerlegung

Übrigens kann die Zerlegung über einem größeren Körper manchmal dazu benutzt werden um zu zeigen, dass ein Polynom über dem gegebenen Körper irreduzibel ist.




<< | Kurs:Einführung in die Algebra (Osnabrück 2009) | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)